|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
from typing import Dict, Iterator, List, Tuple, Union |
|
import gc |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
from modules.embedding import SinePositionalEmbedding, TokenEmbedding |
|
from modules.transformer import ( |
|
AdaptiveLayerNorm, |
|
LayerNorm, |
|
TransformerDecoderLayer, |
|
TransformerEncoder, |
|
TransformerEncoderLayer, |
|
) |
|
|
|
from .macros import NUM_AUDIO_TOKENS, NUM_TEXT_TOKENS |
|
|
|
import psutil |
|
def get_memory_usage(): |
|
process = psutil.Process() |
|
memory_info = process.memory_info() |
|
|
|
memory_used = memory_info.rss |
|
memory_used_mb = memory_used / (1024 * 1024) |
|
|
|
return memory_used_mb |
|
|
|
class Transpose(nn.Identity): |
|
"""(N, T, D) -> (N, D, T)""" |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
return input.transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class VALLF(nn.Module): |
|
"""It implements https://arxiv.org/abs/2301.02111 |
|
"Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers" |
|
""" |
|
|
|
def __init__( |
|
self, |
|
d_model: int, |
|
nhead: int, |
|
num_layers: int, |
|
norm_first: bool = True, |
|
add_prenet: bool = False, |
|
decoder_cls: Union[ |
|
nn.TransformerDecoder, nn.TransformerEncoder |
|
] = nn.TransformerDecoder, |
|
decoder_layer_cls: Union[ |
|
TransformerDecoderLayer, TransformerEncoderLayer |
|
] = TransformerDecoderLayer, |
|
prefix_mode: int = 0, |
|
share_embedding: bool = True, |
|
nar_scale_factor: float = 1.0, |
|
prepend_bos: bool = True, |
|
num_quantizers: int = 8, |
|
): |
|
""" |
|
Args: |
|
d_model: |
|
The number of expected features in the input (required). |
|
nhead: |
|
The number of heads in the multiheadattention models (required). |
|
num_layers: |
|
The number of sub-decoder-layers in the decoder (required). |
|
""" |
|
super().__init__() |
|
nar_d_model = int(d_model * nar_scale_factor) |
|
|
|
self.ar_text_embedding = TokenEmbedding(d_model, NUM_TEXT_TOKENS) |
|
self.nar_text_embedding = TokenEmbedding(nar_d_model, NUM_TEXT_TOKENS) |
|
|
|
|
|
|
|
self.ar_audio_prepend_bos = prepend_bos |
|
self.ar_audio_embedding = TokenEmbedding( |
|
d_model, NUM_AUDIO_TOKENS + 1 + int(prepend_bos) |
|
) |
|
|
|
|
|
if add_prenet: |
|
self.ar_text_prenet = nn.Sequential( |
|
Transpose(), |
|
nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), |
|
nn.BatchNorm1d(d_model), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), |
|
nn.BatchNorm1d(d_model), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), |
|
nn.BatchNorm1d(d_model), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
Transpose(), |
|
nn.Linear(d_model, d_model), |
|
) |
|
|
|
self.ar_audio_prenet = nn.Sequential( |
|
nn.Linear(d_model, 256), |
|
nn.ReLU(), |
|
nn.Dropout(0.25), |
|
nn.Linear(256, 256), |
|
nn.ReLU(), |
|
nn.Dropout(0.25), |
|
nn.Linear(256, d_model), |
|
) |
|
else: |
|
self.ar_text_prenet = nn.Identity() |
|
self.ar_audio_prenet = nn.Identity() |
|
|
|
self.ar_text_position = SinePositionalEmbedding( |
|
d_model, |
|
dropout=0.1, |
|
scale=False, |
|
alpha=True, |
|
) |
|
self.ar_audio_position = SinePositionalEmbedding( |
|
d_model, |
|
dropout=0.1, |
|
scale=False, |
|
alpha=True, |
|
) |
|
|
|
self.ar_decoder = decoder_cls( |
|
decoder_layer_cls( |
|
d_model, |
|
nhead, |
|
dim_feedforward=d_model * 4, |
|
dropout=0.1, |
|
batch_first=True, |
|
norm_first=norm_first, |
|
), |
|
num_layers=num_layers, |
|
norm=LayerNorm(d_model) if norm_first else None, |
|
) |
|
self.ar_predict_layer = nn.Linear( |
|
d_model, NUM_AUDIO_TOKENS + 1, bias=False |
|
) |
|
|
|
self.rng = random.Random(0) |
|
self.num_heads = nhead |
|
self.prefix_mode = prefix_mode |
|
self.num_quantizers = num_quantizers |
|
|
|
assert num_quantizers >= 1 |
|
if num_quantizers > 1: |
|
self.nar_audio_embeddings = nn.ModuleList( |
|
[TokenEmbedding(nar_d_model, NUM_AUDIO_TOKENS + 1)] |
|
+ [ |
|
TokenEmbedding(nar_d_model, NUM_AUDIO_TOKENS) |
|
for i in range(num_quantizers - 1) |
|
] |
|
) |
|
|
|
|
|
if add_prenet: |
|
self.nar_text_prenet = nn.Sequential( |
|
Transpose(), |
|
nn.Conv1d( |
|
nar_d_model, nar_d_model, kernel_size=5, padding="same" |
|
), |
|
nn.BatchNorm1d(nar_d_model), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
nn.Conv1d( |
|
nar_d_model, nar_d_model, kernel_size=5, padding="same" |
|
), |
|
nn.BatchNorm1d(nar_d_model), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
nn.Conv1d( |
|
nar_d_model, nar_d_model, kernel_size=5, padding="same" |
|
), |
|
nn.BatchNorm1d(nar_d_model), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
Transpose(), |
|
nn.Linear(nar_d_model, nar_d_model), |
|
) |
|
self.nar_audio_prenet = nn.Sequential( |
|
nn.Linear(nar_d_model, 256), |
|
nn.ReLU(), |
|
nn.Dropout(0.25), |
|
nn.Linear(256, 256), |
|
nn.ReLU(), |
|
nn.Dropout(0.25), |
|
nn.Linear(256, nar_d_model), |
|
) |
|
else: |
|
self.nar_text_prenet = nn.Identity() |
|
self.nar_audio_prenet = nn.Identity() |
|
|
|
self.nar_text_position = SinePositionalEmbedding( |
|
nar_d_model, |
|
dropout=0.0, |
|
scale=False, |
|
alpha=False, |
|
) |
|
self.nar_audio_position = SinePositionalEmbedding( |
|
nar_d_model, |
|
dropout=0.1, |
|
scale=False, |
|
alpha=False, |
|
) |
|
|
|
self.nar_decoder = decoder_cls( |
|
decoder_layer_cls( |
|
nar_d_model, |
|
int(nhead * nar_scale_factor), |
|
dim_feedforward=nar_d_model * 4, |
|
dropout=0.1, |
|
batch_first=True, |
|
norm_first=norm_first, |
|
adaptive_layer_norm=True, |
|
), |
|
num_layers=int(num_layers * nar_scale_factor), |
|
norm=AdaptiveLayerNorm( |
|
nar_d_model, norm=nn.LayerNorm(nar_d_model) |
|
) |
|
if norm_first |
|
else None, |
|
) |
|
self.nar_predict_layers = nn.ModuleList( |
|
[ |
|
nn.Linear(nar_d_model, NUM_AUDIO_TOKENS, bias=False) |
|
for i in range(num_quantizers - 1) |
|
] |
|
) |
|
self.nar_stage_embeddings = nn.ModuleList( |
|
[ |
|
TokenEmbedding(nar_d_model, 1) |
|
for i in range(num_quantizers - 1) |
|
] |
|
) |
|
|
|
if share_embedding: |
|
|
|
|
|
|
|
|
|
|
|
|
|
for j in range(0, num_quantizers - 2): |
|
self.nar_predict_layers[ |
|
j |
|
].weight = self.nar_audio_embeddings[j + 2].weight |
|
|
|
def stage_parameters(self, stage: int = 1) -> Iterator[nn.Parameter]: |
|
assert stage > 0 |
|
if stage == 1: |
|
for name, param in self.named_parameters(): |
|
if name.startswith("ar_"): |
|
print(f" AR parameter: {name}") |
|
yield param |
|
|
|
if stage == 2: |
|
for name, param in self.named_parameters(): |
|
if name.startswith("nar_"): |
|
print(f"NAR parameter: {name}") |
|
yield param |
|
|
|
def stage_named_parameters( |
|
self, stage: int = 1 |
|
) -> Iterator[Tuple[str, nn.Parameter]]: |
|
assert stage > 0 |
|
if stage == 1: |
|
for pair in self.named_parameters(): |
|
if pair[0].startswith("ar_"): |
|
yield pair |
|
|
|
if stage == 2: |
|
for pair in self.named_parameters(): |
|
if pair[0].startswith("nar_"): |
|
yield pair |
|
|
|
def pad_y_eos(self, y, y_mask_int, eos_id): |
|
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad( |
|
y_mask_int, (0, 1), value=1 |
|
) |
|
|
|
if self.ar_audio_prepend_bos: |
|
return ( |
|
F.pad(targets[:, :-1], (1, 0), value=NUM_AUDIO_TOKENS + 1), |
|
targets, |
|
) |
|
|
|
return targets[:, :-1], targets[:, 1:] |
|
|
|
def _prepare_prompts(self, y, y_lens, codes, nar_stage, y_prompts_codes, prefix_mode): |
|
|
|
|
|
|
|
if prefix_mode == 0: |
|
|
|
prefix_len = 0 |
|
y_emb = self.nar_audio_embeddings[0](y) |
|
for j in range(1, nar_stage): |
|
|
|
y_emb = y_emb + self.nar_audio_embeddings[j](codes[..., j]) |
|
elif prefix_mode == 1: |
|
|
|
int_low = (0.25 * y_lens.min()).type(torch.int64).item() |
|
prefix_len = torch.randint(0, int_low * 2, size=()).item() |
|
prefix_len = min(prefix_len, 225) |
|
|
|
y_prompts = self.nar_audio_embeddings[0](y[:, :prefix_len]) |
|
y_emb = self.nar_audio_embeddings[0](y[:, prefix_len:]) |
|
for j in range(1, self.num_quantizers): |
|
y_prompts += self.nar_audio_embeddings[j]( |
|
codes[:, :prefix_len, j] |
|
) |
|
if j < nar_stage: |
|
y_emb += self.nar_audio_embeddings[j]( |
|
codes[:, prefix_len:, j] |
|
) |
|
y_emb = torch.concat([y_prompts, y_emb], axis=1) |
|
elif prefix_mode in [2, 4]: |
|
if prefix_mode == 2: |
|
|
|
prefix_len = min(225, int(0.25 * y_lens.min().item())) |
|
|
|
y_prompts_codes = [] |
|
for b in range(codes.shape[0]): |
|
start = self.rng.randint(0, y_lens[b].item() - prefix_len) |
|
y_prompts_codes.append( |
|
torch.clone(codes[b, start : start + prefix_len]) |
|
) |
|
codes[ |
|
b, start : start + prefix_len, nar_stage |
|
] = NUM_AUDIO_TOKENS |
|
y_prompts_codes = torch.stack(y_prompts_codes, dim=0) |
|
else: |
|
prefix_len = y_prompts_codes.shape[1] |
|
|
|
y_prompts = self.nar_audio_embeddings[0](y_prompts_codes[..., 0]) |
|
y_emb = self.nar_audio_embeddings[0](y) |
|
for j in range(1, self.num_quantizers): |
|
y_prompts += self.nar_audio_embeddings[j]( |
|
y_prompts_codes[..., j] |
|
) |
|
if j < nar_stage: |
|
y_emb += self.nar_audio_embeddings[j](codes[..., j]) |
|
y_emb = torch.concat([y_prompts, y_emb], axis=1) |
|
else: |
|
raise ValueError |
|
|
|
return y_emb, prefix_len |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_lens: torch.Tensor, |
|
y: Union[torch.Tensor], |
|
y_lens: Union[torch.Tensor], |
|
reduction: str = "sum", |
|
train_stage: int = 0, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Union[torch.Tensor, None]]: |
|
raise NotImplementedError |
|
|
|
def inference( |
|
self, |
|
x: torch.Tensor, |
|
x_lens: torch.Tensor, |
|
y: torch.Tensor, |
|
enroll_x_lens: Union[torch.Tensor, None] = None, |
|
top_k: int = -100, |
|
temperature: float = 1.0, |
|
) -> torch.Tensor: |
|
raise NotImplementedError |
|
|
|
def visualize( |
|
self, |
|
predicts: Tuple[torch.Tensor], |
|
batch: Dict[str, Union[List, torch.Tensor]], |
|
output_dir: str, |
|
limit: int = 4, |
|
) -> None: |
|
raise NotImplementedError |
|
|
|
|
|
class VALLE(VALLF): |
|
"""It implements https://arxiv.org/abs/2301.02111 |
|
"Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers" |
|
""" |
|
|
|
def __init__( |
|
self, |
|
d_model: int, |
|
nhead: int, |
|
num_layers: int, |
|
norm_first: bool = True, |
|
add_prenet: bool = False, |
|
prefix_mode: int = 0, |
|
share_embedding: bool = True, |
|
nar_scale_factor: float = 1.0, |
|
**kwargs, |
|
): |
|
""" |
|
Args: |
|
d_model: |
|
The number of expected features in the input (required). |
|
nhead: |
|
The number of heads in the multiheadattention models (required). |
|
num_layers: |
|
The number of sub-decoder-layers in the decoder (required). |
|
""" |
|
super(VALLE, self).__init__( |
|
d_model, |
|
nhead, |
|
num_layers, |
|
norm_first=norm_first, |
|
add_prenet=add_prenet, |
|
decoder_cls=TransformerEncoder, |
|
decoder_layer_cls=TransformerEncoderLayer, |
|
prefix_mode=prefix_mode, |
|
share_embedding=share_embedding, |
|
nar_scale_factor=nar_scale_factor, |
|
**kwargs, |
|
) |
|
self.language_ID = { |
|
'en': 0, |
|
'zh': 1, |
|
'ja': 2, |
|
} |
|
self.ar_language_embedding = TokenEmbedding(d_model, len(self.language_ID)) |
|
self.nar_language_embedding = TokenEmbedding(d_model, len(self.language_ID)) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_lens: torch.Tensor, |
|
y: Union[torch.Tensor], |
|
y_lens: Union[torch.Tensor], |
|
reduction: str = "sum", |
|
train_stage: int = 0, |
|
**kwargs, |
|
): |
|
raise NotImplementedError |
|
|
|
def inference( |
|
self, |
|
x: torch.Tensor, |
|
x_lens: torch.Tensor, |
|
y: torch.Tensor, |
|
enroll_x_lens: torch.Tensor, |
|
top_k: int = -100, |
|
temperature: float = 1.0, |
|
prompt_language: str = None, |
|
text_language: str = None, |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
x: |
|
A 2-D tensor of shape (1, S). |
|
x_lens: |
|
A 1-D tensor of shape (1,). It contains the number of tokens in `x` |
|
before padding. |
|
y: |
|
A 3-D tensor of shape (1, T, 8). |
|
top_k: (`optional`) int |
|
The number of highest probability tokens to keep for top-k-filtering. Default to -100. |
|
temperature: (`optional`) float |
|
The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. |
|
Returns: |
|
Return the predicted audio code matrix. |
|
""" |
|
assert x.ndim == 2, x.shape |
|
assert x_lens.ndim == 1, x_lens.shape |
|
assert y.ndim == 3, y.shape |
|
assert y.shape[0] == 1, y.shape |
|
|
|
assert torch.all(x_lens > 0) |
|
|
|
|
|
text = x |
|
x = self.ar_text_embedding(text) |
|
|
|
prompt_language_id = torch.LongTensor(np.array([self.language_ID[prompt_language]])).to(x.device) |
|
if isinstance(text_language, str): |
|
text_language_id = torch.LongTensor(np.array([self.language_ID[text_language]])).to(x.device) |
|
elif isinstance(text_language, List): |
|
text_language_id = torch.LongTensor(np.array([self.language_ID[tl] for tl in text_language])).to(x.device) |
|
x[:, :enroll_x_lens, :] += self.ar_language_embedding(prompt_language_id) |
|
x[:, enroll_x_lens:, :] += self.ar_language_embedding(text_language_id) |
|
x = self.ar_text_prenet(x) |
|
x = self.ar_text_position(x) |
|
|
|
text_len = x_lens.max() |
|
prompts = y |
|
prefix_len = y.shape[1] |
|
|
|
|
|
|
|
y = prompts[..., 0] |
|
if self.ar_audio_prepend_bos: |
|
y = F.pad(y, (1, 0), value=NUM_AUDIO_TOKENS + 1) |
|
|
|
x_len = x_lens.max() |
|
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) |
|
|
|
kv_cache = None |
|
use_kv_caching = True |
|
while True: |
|
y_emb = self.ar_audio_embedding(y) |
|
y_emb = self.ar_audio_prenet(y_emb) |
|
y_pos = self.ar_audio_position(y_emb) |
|
xy_pos = torch.concat([x, y_pos], dim=1) |
|
|
|
y_len = y.shape[1] |
|
x_attn_mask_pad = F.pad( |
|
x_attn_mask, |
|
(0, y_len), |
|
value=True, |
|
) |
|
y_attn_mask = F.pad( |
|
torch.triu( |
|
torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1 |
|
), |
|
(x_len, 0), |
|
value=False, |
|
) |
|
xy_attn_mask = torch.concat( |
|
[x_attn_mask_pad, y_attn_mask], dim=0 |
|
).to(y.device) |
|
|
|
|
|
if use_kv_caching and kv_cache is not None: |
|
xy_pos = xy_pos[:, [-1]] |
|
else: |
|
pass |
|
|
|
xy_dec, kv_cache = self.ar_decoder.infer( |
|
xy_pos, |
|
mask=xy_attn_mask, |
|
past_kv=kv_cache, |
|
use_cache=use_kv_caching, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
logits = self.ar_predict_layer(xy_dec[:, -1]) |
|
samples = topk_sampling( |
|
logits, top_k=top_k, top_p=1, temperature=temperature |
|
) |
|
|
|
if ( |
|
torch.argmax(logits, dim=-1)[0] == NUM_AUDIO_TOKENS |
|
or samples[0, 0] == NUM_AUDIO_TOKENS |
|
or (y.shape[1] - prompts.shape[1]) > x_lens.max() * 16 |
|
): |
|
if prompts.shape[1] == y.shape[1]: |
|
raise SyntaxError( |
|
"well trained model shouldn't reach here." |
|
) |
|
|
|
print(f"VALL-E EOS [{prompts.shape[1]} -> {y.shape[1]}]") |
|
|
|
memory_used = get_memory_usage() |
|
print(f"Current memory used: {memory_used:.2f} MB") |
|
break |
|
|
|
|
|
if y.shape[1] > 2250: |
|
print(f"VALL-E EOS [{prompts.shape[1]} -> {y.shape[1]}]") |
|
break |
|
|
|
y = torch.concat([y, samples], dim=1) |
|
|
|
codes = [y[:, prefix_len + int(self.ar_audio_prepend_bos) :]] |
|
if self.num_quantizers == 1: |
|
return torch.stack(codes, dim=-1) |
|
|
|
|
|
y_emb = self.nar_audio_embeddings[0]( |
|
y[:, int(self.ar_audio_prepend_bos) :] |
|
) |
|
|
|
if self.prefix_mode in [2, 4]: |
|
enrolled_len = enroll_x_lens.max().item() |
|
|
|
text = torch.concat( |
|
[ |
|
text[:, :1], |
|
text[:, enrolled_len - 1 :], |
|
], |
|
dim=1, |
|
) |
|
text_len = text_len - (enrolled_len - 2) |
|
assert text.shape[0] == 1 |
|
|
|
x = self.nar_text_embedding(text) |
|
|
|
prompt_language_id = torch.LongTensor(np.array([self.language_ID[prompt_language]])).to(x.device) |
|
if isinstance(text_language, str): |
|
text_language_id = torch.LongTensor(np.array([self.language_ID[text_language]])).to(x.device) |
|
elif isinstance(text_language, List): |
|
text_language_id = torch.LongTensor(np.array([self.language_ID[tl] for tl in text_language])).to(x.device) |
|
x[:, :enroll_x_lens, :] += self.nar_language_embedding(prompt_language_id) |
|
x[:, enroll_x_lens:, :] += self.nar_language_embedding(text_language_id) |
|
x = self.nar_text_prenet(x) |
|
x = self.nar_text_position(x) |
|
|
|
if self.prefix_mode == 0: |
|
for i, (predict_layer, embedding_layer) in enumerate( |
|
zip( |
|
self.nar_predict_layers, |
|
self.nar_audio_embeddings[1:], |
|
) |
|
): |
|
y_pos = self.nar_audio_prenet(y_emb) |
|
y_pos = self.nar_audio_position(y_pos) |
|
xy_pos = torch.concat([x, y_pos], dim=1) |
|
|
|
xy_dec, _ = self.nar_decoder( |
|
(xy_pos, self.nar_stage_embeddings[i].weight) |
|
) |
|
logits = predict_layer(xy_dec[:, text_len + prefix_len :]) |
|
|
|
samples = torch.argmax(logits, dim=-1) |
|
codes.append(samples) |
|
|
|
if i < self.num_quantizers - 2: |
|
y_emb[:, :prefix_len] += embedding_layer( |
|
prompts[..., i + 1] |
|
) |
|
y_emb[:, prefix_len:] += embedding_layer(samples) |
|
else: |
|
for j in range(1, self.num_quantizers): |
|
y_emb[:, :prefix_len] += self.nar_audio_embeddings[j]( |
|
prompts[..., j] |
|
) |
|
|
|
for i, (predict_layer, embedding_layer) in enumerate( |
|
zip( |
|
self.nar_predict_layers, |
|
self.nar_audio_embeddings[1:], |
|
) |
|
): |
|
y_pos = self.nar_audio_prenet(y_emb) |
|
y_pos = self.nar_audio_position(y_pos) |
|
xy_pos = torch.concat([x, y_pos], dim=1) |
|
|
|
xy_dec, _ = self.nar_decoder( |
|
(xy_pos, self.nar_stage_embeddings[i].weight) |
|
) |
|
logits = predict_layer(xy_dec[:, text_len + prefix_len :]) |
|
|
|
samples = torch.argmax(logits, dim=-1) |
|
codes.append(samples) |
|
|
|
if i < self.num_quantizers - 2: |
|
y_emb[:, prefix_len:] += embedding_layer(samples) |
|
|
|
assert len(codes) == self.num_quantizers |
|
del text_language_id, prompt_language_id, y_emb, x, y_pos, xy_pos, xy_dec, logits, samples, kv_cache, x_attn_mask, y_attn_mask, xy_attn_mask |
|
gc.collect() |
|
return torch.stack(codes, dim=-1) |
|
|
|
def continual( |
|
self, |
|
x: torch.Tensor, |
|
x_lens: torch.Tensor, |
|
y: torch.Tensor, |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
x: |
|
A 2-D tensor of shape (1, S). |
|
x_lens: |
|
A 1-D tensor of shape (1,). It contains the number of tokens in `x` |
|
before padding. |
|
y: |
|
A 3-D tensor of shape (1, T, 8). |
|
Returns: |
|
Return the predicted audio code matrix. |
|
""" |
|
assert x.ndim == 2, x.shape |
|
assert x_lens.ndim == 1, x_lens.shape |
|
assert y.ndim == 3, y.shape |
|
assert y.shape[0] == 1, y.shape |
|
|
|
assert torch.all(x_lens > 0) |
|
assert self.num_quantizers == 8 |
|
|
|
|
|
text = x |
|
x = self.ar_text_embedding(text) |
|
x = self.ar_text_prenet(x) |
|
x = self.ar_text_position(x) |
|
|
|
text_len = x_lens.max() |
|
|
|
prefix_len = min(int(y.shape[1] * 0.5), 3 * 75) |
|
|
|
|
|
prompts = y[:, :prefix_len] |
|
|
|
codes = [y[:, prefix_len:, 0]] |
|
|
|
x = self.nar_text_embedding(text) |
|
x = self.nar_text_prenet(x) |
|
x = self.nar_text_position(x) |
|
|
|
y_emb = self.nar_audio_embeddings[0](y[..., 0]) |
|
|
|
if self.prefix_mode == 0: |
|
for i, (predict_layer, embedding_layer) in enumerate( |
|
zip( |
|
self.nar_predict_layers, |
|
self.nar_audio_embeddings[1:], |
|
) |
|
): |
|
y_pos = self.nar_audio_position(y_emb) |
|
y_pos = self.nar_audio_prenet(y_pos) |
|
xy_pos = torch.concat([x, y_pos], dim=1) |
|
|
|
xy_dec, _ = self.nar_decoder( |
|
(xy_pos, self.nar_stage_embeddings[i].weight) |
|
) |
|
logits = predict_layer(xy_dec[:, text_len + prefix_len :]) |
|
|
|
samples = torch.argmax(logits, dim=-1) |
|
codes.append(samples) |
|
|
|
if i < 6: |
|
y_emb[:, :prefix_len] += embedding_layer( |
|
prompts[..., i + 1] |
|
) |
|
y_emb[:, prefix_len:] += embedding_layer(samples) |
|
else: |
|
for j in range(1, 8): |
|
y_emb[:, :prefix_len] += self.nar_audio_embeddings[j]( |
|
prompts[..., j] |
|
) |
|
|
|
for i, (predict_layer, embedding_layer) in enumerate( |
|
zip( |
|
self.nar_predict_layers, |
|
self.nar_audio_embeddings[1:], |
|
) |
|
): |
|
y_pos = self.nar_audio_prenet(y_emb) |
|
y_pos = self.nar_audio_position(y_pos) |
|
xy_pos = torch.concat([x, y_pos], dim=1) |
|
|
|
xy_dec, _ = self.nar_decoder( |
|
(xy_pos, self.nar_stage_embeddings[i].weight) |
|
) |
|
logits = predict_layer(xy_dec[:, text_len + prefix_len :]) |
|
|
|
samples = torch.argmax(logits, dim=-1) |
|
codes.append(samples) |
|
|
|
if i < 6: |
|
y_emb[:, prefix_len:] += embedding_layer(samples) |
|
|
|
assert len(codes) == 8 |
|
return torch.stack(codes, dim=-1) |
|
|
|
|
|
|
|
def top_k_top_p_filtering( |
|
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1 |
|
): |
|
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering |
|
Args: |
|
logits: logits distribution shape (batch size, vocabulary size) |
|
if top_k > 0: keep only top k tokens with highest probability (top-k filtering). |
|
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). |
|
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) |
|
Make sure we keep at least min_tokens_to_keep per batch example in the output |
|
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 |
|
""" |
|
if top_k > 0: |
|
top_k = min( |
|
max(top_k, min_tokens_to_keep), logits.size(-1) |
|
) |
|
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
logits[indices_to_remove] = filter_value |
|
|
|
if top_p < 1.0: |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum( |
|
F.softmax(sorted_logits, dim=-1), dim=-1 |
|
) |
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
if min_tokens_to_keep > 1: |
|
|
|
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 |
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ |
|
..., :-1 |
|
].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter( |
|
1, sorted_indices, sorted_indices_to_remove |
|
) |
|
logits[indices_to_remove] = filter_value |
|
return logits |
|
|
|
|
|
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if temperature != 1.0: |
|
logits = logits / temperature |
|
|
|
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) |
|
|
|
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) |
|
return token |
|
|