wt002 commited on
Commit
f5a754e
·
verified ·
1 Parent(s): 97851ae

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +4 -4
agent.py CHANGED
@@ -26,7 +26,7 @@ import uuid
26
  import requests
27
  import json
28
  from langchain_core.documents import Document
29
- from langchain.vectorstores import FAISS
30
 
31
  #from langchain.embeddings import BERTEmbeddings
32
  #from langchain_community.embeddings import HuggingFaceEmbeddings
@@ -64,7 +64,7 @@ from typing import Union
64
  from functools import reduce
65
  from youtube_transcript_api import YouTubeTranscriptApi
66
  from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable
67
- import faiss
68
 
69
  from langchain.schema import Document
70
 
@@ -388,9 +388,9 @@ docs = [
388
  texts = [doc.page_content for doc in docs]
389
 
390
  # Initialize the embedding model
391
- embedding_model = HuggingFaceEmbeddings(model_name="bert-base-uncased")
392
 
393
- embeddings = [embedding_model.embed_query(text) for text in texts]
394
 
395
  # Create the FAISS index
396
  vector_store = FAISS.from_documents(docs, embedding_model)
 
26
  import requests
27
  import json
28
  from langchain_core.documents import Document
29
+ from langchain_community.vectorstores import FAISS
30
 
31
  #from langchain.embeddings import BERTEmbeddings
32
  #from langchain_community.embeddings import HuggingFaceEmbeddings
 
64
  from functools import reduce
65
  from youtube_transcript_api import YouTubeTranscriptApi
66
  from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable
67
+ from langchain_faiss import FAISS
68
 
69
  from langchain.schema import Document
70
 
 
388
  texts = [doc.page_content for doc in docs]
389
 
390
  # Initialize the embedding model
391
+ embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
392
 
393
+ docs = [Document(page_content=text, metadata={"task_id": item["task_id"]}) for item in data]
394
 
395
  # Create the FAISS index
396
  vector_store = FAISS.from_documents(docs, embedding_model)