Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,209 +1,370 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
-
from smolagents import CodeAgent, OpenAIServerModel, DuckDuckGoSearchTool, VisitWebpageTool, tool, \
|
6 |
-
FinalAnswerTool, PythonInterpreterTool, SpeechToTextTool, ToolCallingAgent
|
7 |
-
import yaml
|
8 |
-
import importlib
|
9 |
-
from io import BytesIO
|
10 |
-
import tempfile
|
11 |
import base64
|
12 |
-
|
13 |
-
|
14 |
-
from
|
15 |
-
import
|
16 |
-
import
|
17 |
-
import re
|
18 |
-
|
19 |
|
|
|
|
|
20 |
|
21 |
-
# (Keep Constants as is)
|
22 |
# --- Constants ---
|
23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
@tool
|
27 |
-
def
|
28 |
"""
|
29 |
-
|
|
|
30 |
Args:
|
31 |
-
|
|
|
32 |
Returns:
|
33 |
-
A
|
34 |
-
{
|
35 |
-
"success": true,
|
36 |
-
"transcript": [
|
37 |
-
{"start": 0.0, "end": 5.2, "text": "Hello and welcome"},
|
38 |
-
...
|
39 |
-
]
|
40 |
-
}
|
41 |
-
OR
|
42 |
-
{
|
43 |
-
"success": false,
|
44 |
-
"error": "Reason why transcription failed"
|
45 |
-
}
|
46 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
try:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
{
|
59 |
-
"
|
60 |
-
"
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
}
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
-
return
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
@tool
|
73 |
-
def
|
74 |
"""
|
75 |
-
|
76 |
-
|
77 |
-
are also supported. The result includes each snippet's start time, duration, and text.
|
78 |
Args:
|
79 |
-
|
|
|
80 |
Returns:
|
81 |
-
A
|
82 |
-
{
|
83 |
-
"success": true,
|
84 |
-
"transcript": [
|
85 |
-
{"start": 0.0, "duration": 1.54, "text": "Hey there"},
|
86 |
-
{"start": 1.54, "duration": 4.16, "text": "how are you"},
|
87 |
-
...
|
88 |
-
]
|
89 |
-
}
|
90 |
-
OR
|
91 |
-
{
|
92 |
-
"success": false,
|
93 |
-
"error": "Reason why the transcript could not be retrieved"
|
94 |
-
}
|
95 |
"""
|
96 |
try:
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
except Exception as e:
|
124 |
-
return
|
125 |
|
126 |
-
# --- Basic Agent Definition ---
|
127 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
128 |
-
class BasicAgent:
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def __init__(self):
|
131 |
-
model = OpenAIServerModel(api_key=os.environ.get("OPENAI_API_KEY"), model_id="gpt-4o")
|
132 |
-
|
133 |
-
self.code_agent = CodeAgent(
|
134 |
-
tools=[PythonInterpreterTool(), DuckDuckGoSearchTool(), VisitWebpageTool(), transcribe_audio_file,
|
135 |
-
get_youtube_transcript,
|
136 |
-
FinalAnswerTool()],
|
137 |
-
model=model,
|
138 |
-
max_steps=20,
|
139 |
-
name="hf_agent_course_final_assignment_solver",
|
140 |
-
prompt_templates=yaml.safe_load(
|
141 |
-
importlib.resources.files("prompts").joinpath("code_agent.yaml").read_text()
|
142 |
-
)
|
143 |
-
|
144 |
-
)
|
145 |
print("BasicAgent initialized.")
|
|
|
|
|
146 |
|
147 |
-
def __call__(self,
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
final_result = self.code_agent.run(question)
|
152 |
-
|
153 |
-
# Extract text after "FINAL ANSWER:" (case-insensitive, and trims whitespace)
|
154 |
-
match = re.search(r'final answer:\s*(.*)', str(final_result), re.IGNORECASE | re.DOTALL)
|
155 |
-
if match:
|
156 |
-
return match.group(1).strip()
|
157 |
-
|
158 |
-
# Fallback in case the pattern is not found
|
159 |
-
return str(final_result).strip()
|
160 |
-
|
161 |
-
def enrich_question_with_associated_file_details(self, task_id:str, question: str, file_name: str) -> str:
|
162 |
-
api_url = DEFAULT_API_URL
|
163 |
-
get_associated_files_url = f"{api_url}/files/{task_id}"
|
164 |
-
response = requests.get(get_associated_files_url, timeout=15)
|
165 |
-
response.raise_for_status()
|
166 |
-
|
167 |
-
if file_name.endswith(".mp3"):
|
168 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
169 |
-
tmp_file.write(response.content)
|
170 |
-
file_path = tmp_file.name
|
171 |
-
return question + "\n\nMentioned .mp3 file local path is: " + file_path
|
172 |
-
elif file_name.endswith(".py"):
|
173 |
-
file_content = response.text
|
174 |
-
return question + "\n\nBelow is mentioned Python file:\n\n```python\n" + file_content + "\n```\n"
|
175 |
-
elif file_name.endswith(".xlsx"):
|
176 |
-
xlsx_io = BytesIO(response.content)
|
177 |
-
df = pd.read_excel(xlsx_io)
|
178 |
-
file_content = df.to_csv(index=False)
|
179 |
-
return question + "\n\nBelow is mentioned excel file in CSV format:\n\n```csv\n" + file_content + "\n```\n"
|
180 |
-
elif file_name.endswith(".png"):
|
181 |
-
base64_str = base64.b64encode(response.content).decode('utf-8')
|
182 |
-
return question + "\n\nBelow is the .png image in base64 format:\n\n```base64\n" + base64_str + "\n```\n"
|
183 |
-
|
184 |
-
|
185 |
-
def enrich_question_with_associated_file_details(self, task_id:str, question: str, file_name: str) -> str:
|
186 |
-
api_url = DEFAULT_API_URL
|
187 |
-
get_associated_files_url = f"{api_url}/files/{task_id}"
|
188 |
-
response = requests.get(get_associated_files_url, timeout=15)
|
189 |
-
response.raise_for_status()
|
190 |
|
191 |
-
if file_name.endswith(".mp3"):
|
192 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
193 |
-
tmp_file.write(response.content)
|
194 |
-
file_path = tmp_file.name
|
195 |
-
return question + "\n\nMentioned .mp3 file local path is: " + file_path
|
196 |
-
elif file_name.endswith(".py"):
|
197 |
-
file_content = response.text
|
198 |
-
return question + "\n\nBelow is mentioned Python file:\n\n```python\n" + file_content + "\n```\n"
|
199 |
-
elif file_name.endswith(".xlsx"):
|
200 |
-
xlsx_io = BytesIO(response.content)
|
201 |
-
df = pd.read_excel(xlsx_io)
|
202 |
-
file_content = df.to_csv(index=False)
|
203 |
-
return question + "\n\nBelow is mentioned excel file in CSV format:\n\n```csv\n" + file_content + "\n```\n"
|
204 |
-
elif file_name.endswith(".png"):
|
205 |
-
base64_str = base64.b64encode(response.content).decode('utf-8')
|
206 |
-
return question + "\n\nBelow is the .png image in base64 format:\n\n```base64\n" + base64_str + "\n```\n"
|
207 |
|
208 |
|
209 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
1 |
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
import requests
|
4 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import base64
|
6 |
+
import mimetypes
|
7 |
+
import tempfile
|
8 |
+
from smolagents import CodeAgent, OpenAIServerModel, tool
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from openai import OpenAI
|
|
|
|
|
11 |
|
12 |
+
# Load environment variables
|
13 |
+
load_dotenv()
|
14 |
|
|
|
15 |
# --- Constants ---
|
16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
17 |
|
18 |
+
# Initialize the OpenAI model using environment variable for API key
|
19 |
+
model = OpenAIServerModel(
|
20 |
+
model_id="o4-mini-2025-04-16",
|
21 |
+
api_base="https://api.openai.com/v1",
|
22 |
+
api_key=os.getenv("openai"),
|
23 |
+
)
|
24 |
+
|
25 |
+
# Initialize OpenAI client
|
26 |
+
openAiClient = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
27 |
|
28 |
@tool
|
29 |
+
def tavily_search(query: str) -> str:
|
30 |
"""
|
31 |
+
Perform a search using the Tavily API.
|
32 |
+
|
33 |
Args:
|
34 |
+
query: The search query string
|
35 |
+
|
36 |
Returns:
|
37 |
+
A string containing the search results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"""
|
39 |
+
api_key = os.getenv("TAVILY_API_KEY")
|
40 |
+
if not api_key:
|
41 |
+
return "Error: TAVILY_API_KEY environment variable is not set"
|
42 |
+
|
43 |
+
api_url = "https://api.tavily.com/search"
|
44 |
+
|
45 |
+
headers = {
|
46 |
+
"Content-Type": "application/json",
|
47 |
+
}
|
48 |
+
|
49 |
+
payload = {
|
50 |
+
"api_key": api_key,
|
51 |
+
"query": query,
|
52 |
+
"search_depth": "advanced",
|
53 |
+
"include_answer": True,
|
54 |
+
"include_raw_content": False,
|
55 |
+
"max_results": 5
|
56 |
+
}
|
57 |
+
|
58 |
try:
|
59 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
60 |
+
response.raise_for_status()
|
61 |
+
data = response.json()
|
62 |
+
|
63 |
+
# Extract the answer and results
|
64 |
+
result = []
|
65 |
+
if "answer" in data:
|
66 |
+
result.append(f"Answer: {data['answer']}")
|
67 |
+
|
68 |
+
if "results" in data:
|
69 |
+
result.append("\nSources:")
|
70 |
+
for i, item in enumerate(data["results"], 1):
|
71 |
+
result.append(f"{i}. {item.get('title', 'No title')}: {item.get('url', 'No URL')}")
|
72 |
+
|
73 |
+
return "\n".join(result)
|
74 |
+
except Exception as e:
|
75 |
+
return f"Error performing Tavily search: {str(e)}"
|
76 |
|
77 |
+
@tool
|
78 |
+
def analyze_image(image_url: str) -> str:
|
79 |
+
"""
|
80 |
+
Analyze an image using OpenAI's vision model and return a description.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
image_url: URL of the image to analyze
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
A detailed description of the image
|
87 |
+
"""
|
88 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
89 |
+
if not api_key:
|
90 |
+
return "Error: OpenAI API key not set in environment variables"
|
91 |
+
|
92 |
+
# Download the image
|
93 |
+
try:
|
94 |
+
response = requests.get(image_url)
|
95 |
+
response.raise_for_status()
|
96 |
+
image_data = response.content
|
97 |
+
base64_image = base64.b64encode(image_data).decode('utf-8')
|
98 |
+
except Exception as e:
|
99 |
+
return f"Error downloading image: {str(e)}"
|
100 |
+
|
101 |
+
# Call OpenAI API
|
102 |
+
api_url = "https://api.openai.com/v1/chat/completions"
|
103 |
+
headers = {
|
104 |
+
"Content-Type": "application/json",
|
105 |
+
"Authorization": f"Bearer {api_key}"
|
106 |
+
}
|
107 |
+
|
108 |
+
payload = {
|
109 |
+
"model": "gpt-4.1-2025-04-14",
|
110 |
+
"messages": [
|
111 |
{
|
112 |
+
"role": "user",
|
113 |
+
"content": [
|
114 |
+
{
|
115 |
+
"type": "text",
|
116 |
+
"text": "Describe this image in detail. Include any text, objects, people, actions, and overall context."
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"type": "image_url",
|
120 |
+
"image_url": {
|
121 |
+
"url": f"data:image/jpeg;base64,{base64_image}"
|
122 |
+
}
|
123 |
+
}
|
124 |
+
]
|
125 |
}
|
126 |
+
],
|
127 |
+
"max_tokens": 500
|
128 |
+
}
|
129 |
+
|
130 |
+
try:
|
131 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
132 |
+
response.raise_for_status()
|
133 |
+
data = response.json()
|
134 |
+
|
135 |
+
if "choices" in data and len(data["choices"]) > 0:
|
136 |
+
return data["choices"][0]["message"]["content"]
|
137 |
+
else:
|
138 |
+
return "No description generated"
|
139 |
+
except Exception as e:
|
140 |
+
return f"Error analyzing image: {str(e)}"
|
141 |
|
142 |
+
@tool
|
143 |
+
def analyze_sound(audio_url: str) -> str:
|
144 |
+
"""
|
145 |
+
Transcribe an audio file using OpenAI's Whisper model.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
audio_url: the url of the audio
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
A transcription of the audio content
|
152 |
+
"""
|
153 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
154 |
+
if not api_key:
|
155 |
+
return "Error: OpenAI API key not set in environment variables"
|
156 |
+
|
157 |
+
# Download the audio file
|
158 |
+
try:
|
159 |
+
response = requests.get(audio_url)
|
160 |
+
response.raise_for_status()
|
161 |
+
|
162 |
+
import tempfile
|
163 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
|
164 |
+
temp_file.write(response.content)
|
165 |
+
temp_file_path = temp_file.name
|
166 |
+
|
167 |
+
audio_file= open(temp_file_path, "rb")
|
168 |
+
|
169 |
except Exception as e:
|
170 |
+
return f"Error downloading audio: {str(e)}"
|
171 |
|
172 |
+
try:
|
173 |
+
transcription = openAiClient.audio.transcriptions.create(
|
174 |
+
model="gpt-4o-transcribe",
|
175 |
+
file=audio_file
|
176 |
+
)
|
177 |
+
return transcription.text
|
178 |
+
except Exception as e:
|
179 |
+
return f"Error transcribing audio: {str(e)}"
|
180 |
|
181 |
@tool
|
182 |
+
def analyze_excel(excel_url: str) -> str:
|
183 |
"""
|
184 |
+
Process an Excel file and convert it to a text-based format.
|
185 |
+
|
|
|
186 |
Args:
|
187 |
+
excel_url: URL of the Excel file to analyze
|
188 |
+
|
189 |
Returns:
|
190 |
+
A text representation of the Excel data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
"""
|
192 |
try:
|
193 |
+
# Download the Excel file
|
194 |
+
response = requests.get(excel_url)
|
195 |
+
response.raise_for_status()
|
196 |
+
|
197 |
+
# Save to a temporary file
|
198 |
+
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file:
|
199 |
+
temp_file.write(response.content)
|
200 |
+
temp_file_path = temp_file.name
|
201 |
+
|
202 |
+
# Read the Excel file
|
203 |
+
df = pd.read_excel(temp_file_path)
|
204 |
+
|
205 |
+
# Convert to a text representation
|
206 |
+
result = []
|
207 |
+
|
208 |
+
# Add sheet information
|
209 |
+
result.append(f"Excel file with {len(df)} rows and {len(df.columns)} columns")
|
210 |
+
|
211 |
+
# Add column names
|
212 |
+
result.append("\nColumns:")
|
213 |
+
for i, col in enumerate(df.columns, 1):
|
214 |
+
result.append(f"{i}. {col}")
|
215 |
+
|
216 |
+
# Add data summary
|
217 |
+
result.append("\nData Summary:")
|
218 |
+
result.append(df.describe().to_string())
|
219 |
+
|
220 |
+
# Add first few rows as a sample
|
221 |
+
result.append("\nFirst 5 rows:")
|
222 |
+
result.append(df.head().to_string())
|
223 |
+
|
224 |
+
# Clean up
|
225 |
+
os.unlink(temp_file_path)
|
226 |
+
|
227 |
+
return "\n".join(result)
|
228 |
+
except Exception as e:
|
229 |
+
return f"Error processing Excel file: {str(e)}"
|
230 |
|
231 |
+
@tool
|
232 |
+
def analyze_text(text_url: str) -> str:
|
233 |
+
"""
|
234 |
+
Process a text file and return its contents.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
text_url: URL of the text file to analyze
|
238 |
+
|
239 |
+
Returns:
|
240 |
+
The contents of the text file
|
241 |
+
"""
|
242 |
+
try:
|
243 |
+
# Download the text file
|
244 |
+
response = requests.get(text_url)
|
245 |
+
response.raise_for_status()
|
246 |
+
|
247 |
+
# Get the text content
|
248 |
+
text_content = response.text
|
249 |
+
|
250 |
+
# For very long files, truncate with a note
|
251 |
+
if len(text_content) > 10000:
|
252 |
+
return f"Text file content (truncated to first 10000 characters):\n\n{text_content[:10000]}\n\n... [content truncated]"
|
253 |
+
|
254 |
+
return f"Text file content:\n\n{text_content}"
|
255 |
+
except Exception as e:
|
256 |
+
return f"Error processing text file: {str(e)}"
|
257 |
|
258 |
+
@tool
|
259 |
+
def transcribe_youtube(youtube_url: str) -> str:
|
260 |
+
"""
|
261 |
+
Extract the transcript from a YouTube video.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
youtube_url: URL of the YouTube video
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
The transcript of the video
|
268 |
+
"""
|
269 |
+
try:
|
270 |
+
# Extract video ID from URL
|
271 |
+
import re
|
272 |
+
video_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', youtube_url)
|
273 |
+
if not video_id_match:
|
274 |
+
return "Error: Invalid YouTube URL"
|
275 |
+
|
276 |
+
video_id = video_id_match.group(1)
|
277 |
+
|
278 |
+
# Use youtube_transcript_api to get the transcript
|
279 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
280 |
+
|
281 |
+
try:
|
282 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
283 |
+
|
284 |
+
# Combine all transcript segments into a single text
|
285 |
+
full_transcript = ""
|
286 |
+
for segment in transcript_list:
|
287 |
+
full_transcript += segment['text'] + " "
|
288 |
+
|
289 |
+
return f"YouTube Video Transcript:\n\n{full_transcript.strip()}"
|
290 |
+
except Exception as e:
|
291 |
+
return f"Error extracting transcript: {str(e)}"
|
292 |
+
except Exception as e:
|
293 |
+
return f"Error processing YouTube video: {str(e)}"
|
294 |
|
295 |
+
@tool
|
296 |
+
def process_file(task_id: str, file_name: str) -> str:
|
297 |
+
"""
|
298 |
+
Fetch and process a file based on task_id and file_name.
|
299 |
+
For images, it will analyze them and return a description of the image.
|
300 |
+
For audio files, it will transcribe them.
|
301 |
+
For Excel files, it will convert them to a text format.
|
302 |
+
For text files, it will return the file contents.
|
303 |
+
Other file types can be ignored for this tool.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
task_id: The task ID to fetch the file for
|
307 |
+
file_name: The name of the file to process
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
A description or transcription of the file content
|
311 |
+
"""
|
312 |
+
if not task_id or not file_name:
|
313 |
+
return "Error: task_id and file_name are required"
|
314 |
+
|
315 |
+
# Construct the file URL
|
316 |
+
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
|
317 |
+
|
318 |
+
try:
|
319 |
+
# Fetch the file
|
320 |
+
response = requests.get(file_url)
|
321 |
+
response.raise_for_status()
|
322 |
+
|
323 |
+
# Determine file type
|
324 |
+
mime_type, _ = mimetypes.guess_type(file_name)
|
325 |
+
|
326 |
+
# Process based on file type
|
327 |
+
if mime_type and mime_type.startswith('image/'):
|
328 |
+
# For images, use the analyze_image tool
|
329 |
+
return analyze_image(file_url)
|
330 |
+
elif file_name.lower().endswith('.mp3') or (mime_type and mime_type.startswith('audio/')):
|
331 |
+
# For audio files, use the analyze_sound tool
|
332 |
+
return analyze_sound(file_url)
|
333 |
+
elif file_name.lower().endswith('.xlsx') or (mime_type and mime_type == 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'):
|
334 |
+
# For Excel files, use the analyze_excel tool
|
335 |
+
return analyze_excel(file_url)
|
336 |
+
elif file_name.lower().endswith(('.txt', '.py', '.js', '.html', '.css', '.json', '.md')) or (mime_type and mime_type.startswith('text/')):
|
337 |
+
# For text files, use the analyze_text tool
|
338 |
+
return analyze_text(file_url)
|
339 |
+
else:
|
340 |
+
# For other file types, return basic information
|
341 |
+
return f"File '{file_name}' of type '{mime_type or 'unknown'}' was fetched successfully. Content processing not implemented for this file type."
|
342 |
except Exception as e:
|
343 |
+
return f"Error processing file: {str(e)}"
|
344 |
|
|
|
|
|
|
|
345 |
|
346 |
+
class BasicAgent:
|
347 |
+
"""
|
348 |
+
A simple agent that uses smolagents.CodeAgent with multiple specialized tools:
|
349 |
+
- Tavily search tool for web searches
|
350 |
+
- Image analysis tool for processing images
|
351 |
+
- Audio transcription tool for processing sound files
|
352 |
+
- Excel analysis tool for processing spreadsheet data
|
353 |
+
- Text file analysis tool for processing code and text files
|
354 |
+
- YouTube transcription tool for processing video content
|
355 |
+
- File processing tool for handling various file types
|
356 |
+
|
357 |
+
The CodeAgent is instantiated once and reused for each question to reduce overhead.
|
358 |
+
"""
|
359 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
print("BasicAgent initialized.")
|
361 |
+
# Reuse a single CodeAgent instance for all queries
|
362 |
+
self.agent = CodeAgent(tools=[tavily_search, analyze_image, analyze_sound, analyze_excel, analyze_text, transcribe_youtube, process_file], model=model)
|
363 |
|
364 |
+
def __call__(self, question: str) -> str:
|
365 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
366 |
+
return self.agent.run(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
|
370 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|