Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,10 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
-
from
|
6 |
-
|
7 |
-
import yaml
|
8 |
-
import importlib
|
9 |
-
from io import BytesIO
|
10 |
-
import tempfile
|
11 |
-
import base64
|
12 |
-
from youtube_transcript_api import YouTubeTranscriptApi
|
13 |
-
from youtube_transcript_api._errors import TranscriptsDisabled, NoTranscriptFound, VideoUnavailable
|
14 |
-
from urllib.parse import urlparse, parse_qs
|
15 |
-
import json
|
16 |
-
import whisper
|
17 |
-
import re
|
18 |
|
19 |
|
20 |
|
@@ -22,164 +12,24 @@ import re
|
|
22 |
# --- Constants ---
|
23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
24 |
|
25 |
-
|
26 |
-
@tool
|
27 |
-
def transcribe_audio_file(file_path: str) -> str:
|
28 |
-
"""
|
29 |
-
Transcribes a local MP3 audio file using Whisper.
|
30 |
-
Args:
|
31 |
-
file_path: Full path to the .mp3 audio file.
|
32 |
-
Returns:
|
33 |
-
A JSON-formatted string containing either the transcript or an error message.
|
34 |
-
{
|
35 |
-
"success": true,
|
36 |
-
"transcript": [
|
37 |
-
{"start": 0.0, "end": 5.2, "text": "Hello and welcome"},
|
38 |
-
...
|
39 |
-
]
|
40 |
-
}
|
41 |
-
OR
|
42 |
-
{
|
43 |
-
"success": false,
|
44 |
-
"error": "Reason why transcription failed"
|
45 |
-
}
|
46 |
-
"""
|
47 |
-
try:
|
48 |
-
if not os.path.exists(file_path):
|
49 |
-
return json.dumps({"success": False, "error": "File does not exist."})
|
50 |
-
|
51 |
-
if not file_path.lower().endswith(".mp3"):
|
52 |
-
return json.dumps({"success": False, "error": "Invalid file type. Only MP3 files are supported."})
|
53 |
-
|
54 |
-
model = whisper.load_model("base") # You can use 'tiny', 'base', 'small', 'medium', or 'large'
|
55 |
-
result = model.transcribe(file_path, verbose=False, word_timestamps=False)
|
56 |
-
|
57 |
-
transcript_data = [
|
58 |
-
{
|
59 |
-
"start": segment["start"],
|
60 |
-
"end": segment["end"],
|
61 |
-
"text": segment["text"].strip()
|
62 |
-
}
|
63 |
-
for segment in result["segments"]
|
64 |
-
]
|
65 |
-
|
66 |
-
return json.dumps({"success": True, "transcript": transcript_data})
|
67 |
-
|
68 |
-
except Exception as e:
|
69 |
-
return json.dumps({"success": False, "error": str(e)})
|
70 |
-
|
71 |
-
|
72 |
-
@tool
|
73 |
-
def get_youtube_transcript(video_url: str) -> str:
|
74 |
-
"""
|
75 |
-
Retrieves the transcript from a YouTube video URL, including timestamps.
|
76 |
-
This tool fetches the English transcript for a given YouTube video. Automatically generated subtitles
|
77 |
-
are also supported. The result includes each snippet's start time, duration, and text.
|
78 |
-
Args:
|
79 |
-
video_url: The full URL of the YouTube video (e.g., https://www.youtube.com/watch?v=12345)
|
80 |
-
Returns:
|
81 |
-
A JSON-formatted string containing either the transcript with timestamps or an error message.
|
82 |
-
{
|
83 |
-
"success": true,
|
84 |
-
"transcript": [
|
85 |
-
{"start": 0.0, "duration": 1.54, "text": "Hey there"},
|
86 |
-
{"start": 1.54, "duration": 4.16, "text": "how are you"},
|
87 |
-
...
|
88 |
-
]
|
89 |
-
}
|
90 |
-
OR
|
91 |
-
{
|
92 |
-
"success": false,
|
93 |
-
"error": "Reason why the transcript could not be retrieved"
|
94 |
-
}
|
95 |
-
"""
|
96 |
-
try:
|
97 |
-
# Extract video ID from URL
|
98 |
-
parsed_url = urlparse(video_url)
|
99 |
-
query_params = parse_qs(parsed_url.query)
|
100 |
-
video_id = query_params.get("v", [None])[0]
|
101 |
-
|
102 |
-
if not video_id:
|
103 |
-
return json.dumps({"success": False, "error": "Invalid YouTube URL. Could not extract video ID."})
|
104 |
-
|
105 |
-
fetched_transcript = YouTubeTranscriptApi().fetch(video_id)
|
106 |
-
transcript_data = [
|
107 |
-
{
|
108 |
-
"start": snippet.start,
|
109 |
-
"duration": snippet.duration,
|
110 |
-
"text": snippet.text
|
111 |
-
}
|
112 |
-
for snippet in fetched_transcript
|
113 |
-
]
|
114 |
-
|
115 |
-
return json.dumps({"success": True, "transcript": transcript_data})
|
116 |
-
|
117 |
-
except VideoUnavailable:
|
118 |
-
return json.dumps({"success": False, "error": "The video is unavailable."})
|
119 |
-
except TranscriptsDisabled:
|
120 |
-
return json.dumps({"success": False, "error": "Transcripts are disabled for this video."})
|
121 |
-
except NoTranscriptFound:
|
122 |
-
return json.dumps({"success": False, "error": "No transcript found for this video."})
|
123 |
-
except Exception as e:
|
124 |
-
return json.dumps({"success": False, "error": str(e)})
|
125 |
-
|
126 |
# --- Basic Agent Definition ---
|
127 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
128 |
-
class BasicAgent:
|
129 |
-
|
130 |
-
def __init__(self):
|
131 |
-
model = OpenAIServerModel(api_key=os.environ.get("OPENAI_API_KEY"), model_id="gpt-4o")
|
132 |
|
133 |
-
self.code_agent = CodeAgent(
|
134 |
-
tools=[PythonInterpreterTool(), DuckDuckGoSearchTool(), VisitWebpageTool(), transcribe_audio_file,
|
135 |
-
get_youtube_transcript,
|
136 |
-
FinalAnswerTool()],
|
137 |
-
model=model,
|
138 |
-
max_steps=20,
|
139 |
-
name="hf_agent_course_final_assignment_solver",
|
140 |
-
prompt_templates=yaml.safe_load(
|
141 |
-
importlib.resources.files("prompts").joinpath("code_agent.yaml").read_text()
|
142 |
-
)
|
143 |
|
144 |
-
|
|
|
|
|
145 |
print("BasicAgent initialized.")
|
|
|
146 |
|
147 |
-
def __call__(self,
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
match = re.search(r'final answer:\s*(.*)', str(final_result), re.IGNORECASE | re.DOTALL)
|
155 |
-
if match:
|
156 |
-
return match.group(1).strip()
|
157 |
-
|
158 |
-
# Fallback in case the pattern is not found
|
159 |
-
return str(final_result).strip()
|
160 |
-
|
161 |
-
def enrich_question_with_associated_file_details(self, task_id:str, question: str, file_name: str) -> str:
|
162 |
-
api_url = DEFAULT_API_URL
|
163 |
-
get_associated_files_url = f"{api_url}/files/{task_id}"
|
164 |
-
response = requests.get(get_associated_files_url, timeout=15)
|
165 |
-
response.raise_for_status()
|
166 |
|
167 |
-
if file_name.endswith(".mp3"):
|
168 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
169 |
-
tmp_file.write(response.content)
|
170 |
-
file_path = tmp_file.name
|
171 |
-
return question + "\n\nMentioned .mp3 file local path is: " + file_path
|
172 |
-
elif file_name.endswith(".py"):
|
173 |
-
file_content = response.text
|
174 |
-
return question + "\n\nBelow is mentioned Python file:\n\n```python\n" + file_content + "\n```\n"
|
175 |
-
elif file_name.endswith(".xlsx"):
|
176 |
-
xlsx_io = BytesIO(response.content)
|
177 |
-
df = pd.read_excel(xlsx_io)
|
178 |
-
file_content = df.to_csv(index=False)
|
179 |
-
return question + "\n\nBelow is mentioned excel file in CSV format:\n\n```csv\n" + file_content + "\n```\n"
|
180 |
-
elif file_name.endswith(".png"):
|
181 |
-
base64_str = base64.b64encode(response.content).decode('utf-8')
|
182 |
-
return question + "\n\nBelow is the .png image in base64 format:\n\n```base64\n" + base64_str + "\n```\n"
|
183 |
|
184 |
|
185 |
|
|
|
1 |
import os
|
2 |
+
import inspect
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
+
from langchain_core.messages import HumanMessage
|
7 |
+
from agent import build_graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
|
|
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# --- Basic Agent Definition ---
|
16 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
class BasicAgent:
|
20 |
+
"""A langgraph agent."""
|
21 |
+
def __init__(self):
|
22 |
print("BasicAgent initialized.")
|
23 |
+
self.graph = build_graph()
|
24 |
|
25 |
+
def __call__(self, question: str) -> str:
|
26 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
27 |
+
# Wrap the question in a HumanMessage from langchain_core
|
28 |
+
messages = [HumanMessage(content=question)]
|
29 |
+
messages = self.graph.invoke({"messages": messages})
|
30 |
+
answer = messages['messages'][-1].content
|
31 |
+
return answer[14:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
|