Spaces:
Runtime error
Runtime error
Update agent.py
Browse files
agent.py
CHANGED
@@ -137,15 +137,36 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
|
137 |
sys_msg = SystemMessage(content=system_prompt)
|
138 |
|
139 |
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
# -------------------------------
|
142 |
-
# Step
|
143 |
# -------------------------------
|
144 |
docs = []
|
145 |
for task in tasks:
|
146 |
# Debugging: Print the keys of each task to ensure 'question' exists
|
147 |
print(f"Keys in task: {task.keys()}")
|
148 |
-
|
149 |
# Ensure the required field 'question' exists
|
150 |
if 'question' not in task:
|
151 |
print(f"Skipping task with missing 'question' field: {task}")
|
@@ -163,8 +184,9 @@ for task in tasks:
|
|
163 |
docs.append(Document(page_content=content, metadata=task))
|
164 |
|
165 |
|
|
|
166 |
# -------------------------------
|
167 |
-
# Step
|
168 |
# -------------------------------
|
169 |
# Initialize HuggingFace Embedding model
|
170 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
@@ -177,8 +199,10 @@ vector_store.save_local("faiss_index")
|
|
177 |
|
178 |
#print("✅ FAISS index created and saved locally.")
|
179 |
|
|
|
|
|
180 |
# -------------------------------
|
181 |
-
# Step
|
182 |
# -------------------------------
|
183 |
retriever = vector_store.as_retriever()
|
184 |
|
|
|
137 |
sys_msg = SystemMessage(content=system_prompt)
|
138 |
|
139 |
|
140 |
+
|
141 |
+
# -------------------------------
|
142 |
+
# Step 2: Load the JSON file or tasks (Replace this part if you're loading tasks dynamically)
|
143 |
+
# -------------------------------
|
144 |
+
# Here we assume the tasks are already fetched from a URL or file.
|
145 |
+
# For now, using an example JSON array directly. Replace this with the actual loading logic.
|
146 |
+
|
147 |
+
tasks = [
|
148 |
+
{
|
149 |
+
"task_id": "8e867cd7-cff9-4e6c-867a-ff5ddc2550be",
|
150 |
+
"question": "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of English Wikipedia.",
|
151 |
+
"Level": "1",
|
152 |
+
"file_name": ""
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"task_id": "a1e91b78-d3d8-4675-bb8d-62741b4b68a6",
|
156 |
+
"question": "In the video https://www.youtube.com/watch?v=L1vXCYZAYYM, what is the highest number of bird species to be on camera simultaneously?",
|
157 |
+
"Level": "1",
|
158 |
+
"file_name": ""
|
159 |
+
}
|
160 |
+
]
|
161 |
+
|
162 |
# -------------------------------
|
163 |
+
# Step 3: Create Documents from Each JSON Object
|
164 |
# -------------------------------
|
165 |
docs = []
|
166 |
for task in tasks:
|
167 |
# Debugging: Print the keys of each task to ensure 'question' exists
|
168 |
print(f"Keys in task: {task.keys()}")
|
169 |
+
|
170 |
# Ensure the required field 'question' exists
|
171 |
if 'question' not in task:
|
172 |
print(f"Skipping task with missing 'question' field: {task}")
|
|
|
184 |
docs.append(Document(page_content=content, metadata=task))
|
185 |
|
186 |
|
187 |
+
|
188 |
# -------------------------------
|
189 |
+
# Step 4: Set up HuggingFace Embeddings and FAISS VectorStore
|
190 |
# -------------------------------
|
191 |
# Initialize HuggingFace Embedding model
|
192 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
|
|
199 |
|
200 |
#print("✅ FAISS index created and saved locally.")
|
201 |
|
202 |
+
|
203 |
+
|
204 |
# -------------------------------
|
205 |
+
# Step 5: Create Retriever Tool (for use in LangChain)
|
206 |
# -------------------------------
|
207 |
retriever = vector_store.as_retriever()
|
208 |
|