Spaces:
Runtime error
Runtime error
Update agent.py
Browse files
agent.py
CHANGED
@@ -17,6 +17,10 @@ from langchain_core.tools import tool
|
|
17 |
from langchain.tools.retriever import create_retriever_tool
|
18 |
from supabase.client import Client, create_client
|
19 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
20 |
|
21 |
load_dotenv()
|
22 |
|
@@ -122,14 +126,20 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
|
122 |
# System message
|
123 |
sys_msg = SystemMessage(content=system_prompt)
|
124 |
|
125 |
-
#
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
# Initialize embeddings with the
|
132 |
-
embeddings = HuggingFaceEmbeddings(
|
133 |
|
134 |
# Initialize Supabase client
|
135 |
supabase: Client = create_client(
|
@@ -137,19 +147,19 @@ supabase: Client = create_client(
|
|
137 |
os.environ.get("SUPABASE_SERVICE_KEY")
|
138 |
)
|
139 |
|
140 |
-
#
|
141 |
vector_store = SupabaseVectorStore(
|
142 |
client=supabase,
|
143 |
embedding=embeddings,
|
144 |
table_name="documents",
|
145 |
-
query_name="match_documents_langchain"
|
146 |
)
|
147 |
|
148 |
# Create retriever tool
|
149 |
create_retriever_tool = create_retriever_tool(
|
150 |
retriever=vector_store.as_retriever(),
|
151 |
name="Question Search",
|
152 |
-
description="A tool to retrieve similar questions from a vector store."
|
153 |
)
|
154 |
|
155 |
|
|
|
17 |
from langchain.tools.retriever import create_retriever_tool
|
18 |
from supabase.client import Client, create_client
|
19 |
from sentence_transformers import SentenceTransformer
|
20 |
+
from sentence_transformers import SentenceTransformer
|
21 |
+
from langchain.embeddings.base import Embeddings
|
22 |
+
from typing import List
|
23 |
+
import numpy as np
|
24 |
|
25 |
load_dotenv()
|
26 |
|
|
|
126 |
# System message
|
127 |
sys_msg = SystemMessage(content=system_prompt)
|
128 |
|
129 |
+
# Custom embedding class
|
130 |
+
from sentence_transformers import SentenceTransformer
|
131 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
132 |
+
from supabase import create_client, Client
|
133 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
134 |
+
from langchain.tools import create_retriever_tool
|
135 |
+
import os
|
136 |
+
|
137 |
+
# Initialize SentenceTransformer and set max_seq_length
|
138 |
+
sentence_transformer = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
139 |
+
sentence_transformer.max_seq_length = 2048 # Set max sequence length
|
140 |
|
141 |
+
# Initialize embeddings with the model name (dim=768)
|
142 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
143 |
|
144 |
# Initialize Supabase client
|
145 |
supabase: Client = create_client(
|
|
|
147 |
os.environ.get("SUPABASE_SERVICE_KEY")
|
148 |
)
|
149 |
|
150 |
+
# Initialize Supabase vector store
|
151 |
vector_store = SupabaseVectorStore(
|
152 |
client=supabase,
|
153 |
embedding=embeddings,
|
154 |
table_name="documents",
|
155 |
+
query_name="match_documents_langchain"
|
156 |
)
|
157 |
|
158 |
# Create retriever tool
|
159 |
create_retriever_tool = create_retriever_tool(
|
160 |
retriever=vector_store.as_retriever(),
|
161 |
name="Question Search",
|
162 |
+
description="A tool to retrieve similar questions from a vector store."
|
163 |
)
|
164 |
|
165 |
|