Spaces:
Running
Running
import os | |
from dotenv import load_dotenv | |
import requests | |
import pandas as pd | |
import base64 | |
import mimetypes | |
import tempfile | |
from smolagents import CodeAgent, OpenAIServerModel, tool | |
from dotenv import load_dotenv | |
from openai import OpenAI | |
# Load environment variables | |
load_dotenv() | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# Initialize the OpenAI model using environment variable for API key | |
model = OpenAIServerModel( | |
model_id="o4-mini-2025-04-16", | |
api_base="https://api.openai.com/v1", | |
api_key=os.getenv("openai"), | |
) | |
# Initialize OpenAI client | |
openAiClient = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
def tavily_search(query: str) -> str: | |
""" | |
Perform a search using the Tavily API. | |
Args: | |
query: The search query string | |
Returns: | |
A string containing the search results | |
""" | |
api_key = os.getenv("TAVILY_API_KEY") | |
if not api_key: | |
return "Error: TAVILY_API_KEY environment variable is not set" | |
api_url = "https://api.tavily.com/search" | |
headers = { | |
"Content-Type": "application/json", | |
} | |
payload = { | |
"api_key": api_key, | |
"query": query, | |
"search_depth": "advanced", | |
"include_answer": True, | |
"include_raw_content": False, | |
"max_results": 5 | |
} | |
try: | |
response = requests.post(api_url, headers=headers, json=payload) | |
response.raise_for_status() | |
data = response.json() | |
# Extract the answer and results | |
result = [] | |
if "answer" in data: | |
result.append(f"Answer: {data['answer']}") | |
if "results" in data: | |
result.append("\nSources:") | |
for i, item in enumerate(data["results"], 1): | |
result.append(f"{i}. {item.get('title', 'No title')}: {item.get('url', 'No URL')}") | |
return "\n".join(result) | |
except Exception as e: | |
return f"Error performing Tavily search: {str(e)}" | |
def analyze_image(image_url: str) -> str: | |
""" | |
Analyze an image using OpenAI's vision model and return a description. | |
Args: | |
image_url: URL of the image to analyze | |
Returns: | |
A detailed description of the image | |
""" | |
api_key = os.getenv("OPENAI_API_KEY") | |
if not api_key: | |
return "Error: OpenAI API key not set in environment variables" | |
# Download the image | |
try: | |
response = requests.get(image_url) | |
response.raise_for_status() | |
image_data = response.content | |
base64_image = base64.b64encode(image_data).decode('utf-8') | |
except Exception as e: | |
return f"Error downloading image: {str(e)}" | |
# Call OpenAI API | |
api_url = "https://api.openai.com/v1/chat/completions" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {api_key}" | |
} | |
payload = { | |
"model": "gpt-4.1-2025-04-14", | |
"messages": [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": "Describe this image in detail. Include any text, objects, people, actions, and overall context." | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64_image}" | |
} | |
} | |
] | |
} | |
], | |
"max_tokens": 500 | |
} | |
try: | |
response = requests.post(api_url, headers=headers, json=payload) | |
response.raise_for_status() | |
data = response.json() | |
if "choices" in data and len(data["choices"]) > 0: | |
return data["choices"][0]["message"]["content"] | |
else: | |
return "No description generated" | |
except Exception as e: | |
return f"Error analyzing image: {str(e)}" | |
def analyze_sound(audio_url: str) -> str: | |
""" | |
Transcribe an audio file using OpenAI's Whisper model. | |
Args: | |
audio_url: the url of the audio | |
Returns: | |
A transcription of the audio content | |
""" | |
api_key = os.getenv("OPENAI_API_KEY") | |
if not api_key: | |
return "Error: OpenAI API key not set in environment variables" | |
# Download the audio file | |
try: | |
response = requests.get(audio_url) | |
response.raise_for_status() | |
import tempfile | |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file: | |
temp_file.write(response.content) | |
temp_file_path = temp_file.name | |
audio_file= open(temp_file_path, "rb") | |
except Exception as e: | |
return f"Error downloading audio: {str(e)}" | |
try: | |
transcription = openAiClient.audio.transcriptions.create( | |
model="gpt-4o-transcribe", | |
file=audio_file | |
) | |
return transcription.text | |
except Exception as e: | |
return f"Error transcribing audio: {str(e)}" | |
def analyze_excel(excel_url: str) -> str: | |
""" | |
Process an Excel file and convert it to a text-based format. | |
Args: | |
excel_url: URL of the Excel file to analyze | |
Returns: | |
A text representation of the Excel data | |
""" | |
try: | |
# Download the Excel file | |
response = requests.get(excel_url) | |
response.raise_for_status() | |
# Save to a temporary file | |
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as temp_file: | |
temp_file.write(response.content) | |
temp_file_path = temp_file.name | |
# Read the Excel file | |
df = pd.read_excel(temp_file_path) | |
# Convert to a text representation | |
result = [] | |
# Add sheet information | |
result.append(f"Excel file with {len(df)} rows and {len(df.columns)} columns") | |
# Add column names | |
result.append("\nColumns:") | |
for i, col in enumerate(df.columns, 1): | |
result.append(f"{i}. {col}") | |
# Add data summary | |
result.append("\nData Summary:") | |
result.append(df.describe().to_string()) | |
# Add first few rows as a sample | |
result.append("\nFirst 5 rows:") | |
result.append(df.head().to_string()) | |
# Clean up | |
os.unlink(temp_file_path) | |
return "\n".join(result) | |
except Exception as e: | |
return f"Error processing Excel file: {str(e)}" | |
def analyze_text(text_url: str) -> str: | |
""" | |
Process a text file and return its contents. | |
Args: | |
text_url: URL of the text file to analyze | |
Returns: | |
The contents of the text file | |
""" | |
try: | |
# Download the text file | |
response = requests.get(text_url) | |
response.raise_for_status() | |
# Get the text content | |
text_content = response.text | |
# For very long files, truncate with a note | |
if len(text_content) > 10000: | |
return f"Text file content (truncated to first 10000 characters):\n\n{text_content[:10000]}\n\n... [content truncated]" | |
return f"Text file content:\n\n{text_content}" | |
except Exception as e: | |
return f"Error processing text file: {str(e)}" | |
def transcribe_youtube(youtube_url: str) -> str: | |
""" | |
Extract the transcript from a YouTube video. | |
Args: | |
youtube_url: URL of the YouTube video | |
Returns: | |
The transcript of the video | |
""" | |
try: | |
# Extract video ID from URL | |
import re | |
video_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', youtube_url) | |
if not video_id_match: | |
return "Error: Invalid YouTube URL" | |
video_id = video_id_match.group(1) | |
# Use youtube_transcript_api to get the transcript | |
from youtube_transcript_api import YouTubeTranscriptApi | |
try: | |
transcript_list = YouTubeTranscriptApi.get_transcript(video_id) | |
# Combine all transcript segments into a single text | |
full_transcript = "" | |
for segment in transcript_list: | |
full_transcript += segment['text'] + " " | |
return f"YouTube Video Transcript:\n\n{full_transcript.strip()}" | |
except Exception as e: | |
return f"Error extracting transcript: {str(e)}" | |
except Exception as e: | |
return f"Error processing YouTube video: {str(e)}" | |
""" | |
@tool | |
def process_file(task_id: str, file_name: str) -> str: | |
""" | |
Fetch and process a file based on task_id and file_name. | |
For images, it will analyze them and return a description of the image. | |
For audio files, it will transcribe them. | |
For Excel files, it will convert them to a text format. | |
For text files, it will return the file contents. | |
Other file types can be ignored for this tool. | |
Args: | |
task_id: The task ID to fetch the file for | |
file_name: The name of the file to process | |
Returns: | |
A description or transcription of the file content | |
""" | |
if not task_id or not file_name: | |
return "Error: task_id and file_name are required" | |
# Construct the file URL | |
file_url = f"{DEFAULT_API_URL}/files/{task_id}" | |
try: | |
# Fetch the file | |
response = requests.get(file_url) | |
response.raise_for_status() | |
# Determine file type | |
mime_type, _ = mimetypes.guess_type(file_name) | |
# Process based on file type | |
if mime_type and mime_type.startswith('image/'): | |
# For images, use the analyze_image tool | |
return analyze_image(file_url) | |
elif file_name.lower().endswith('.mp3') or (mime_type and mime_type.startswith('audio/')): | |
# For audio files, use the analyze_sound tool | |
return analyze_sound(file_url) | |
elif file_name.lower().endswith('.xlsx') or (mime_type and mime_type == 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'): | |
# For Excel files, use the analyze_excel tool | |
return analyze_excel(file_url) | |
elif file_name.lower().endswith(('.txt', '.py', '.js', '.html', '.css', '.json', '.md')) or (mime_type and mime_type.startswith('text/')): | |
# For text files, use the analyze_text tool | |
return analyze_text(file_url) | |
else: | |
# For other file types, return basic information | |
return f"File '{file_name}' of type '{mime_type or 'unknown'}' was fetched successfully. Content processing not implemented for this file type." | |
except Exception as e: | |
return f"Error processing file: {str(e)}" | |
""" | |
class BasicAgent: | |
""" | |
A simple agent that uses smolagents.CodeAgent with multiple specialized tools: | |
- Tavily search tool for web searches | |
- Image analysis tool for processing images | |
- Audio transcription tool for processing sound files | |
- Excel analysis tool for processing spreadsheet data | |
- Text file analysis tool for processing code and text files | |
- YouTube transcription tool for processing video content | |
- File processing tool for handling various file types | |
The CodeAgent is instantiated once and reused for each question to reduce overhead. | |
""" | |
def __init__(self): | |
print("BasicAgent initialized.") | |
# Reuse a single CodeAgent instance for all queries | |
self.agent = CodeAgent(tools=[tavily_search, analyze_image, analyze_sound, analyze_excel, analyze_text, transcribe_youtube, process_file], model=model) | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
return self.agent.run(question) | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |