wt002's picture
Update agent.py
9eb90d2 verified
raw
history blame
8.73 kB
# agent.py
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from sentence_transformers import SentenceTransformer
from langchain.embeddings.base import Embeddings
from typing import List
import numpy as np
import pandas as pd
import uuid
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
import requests
import json
#from langchain.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
#from langchain.agents import create_retriever_tool
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# -------------------------------
# Step 1: Load documents from CSV file (max 165 rows)
# -------------------------------
# -------------------------------
# Step 1: Load JSON data from URL
# -------------------------------
jsonl_url = "https://huggingface.co/spaces/wt002/Final_Assignment_Project/blob/main/metedata.jsonl" # Replace with your actual JSONL URL
response = requests.get(jsonl_url)
# Ensure the request was successful
if response.status_code != 200:
raise Exception(f"Failed to load JSONL from {jsonl_url}. Status code: {response.status_code}")
# Ensure the request was successful
if response.status_code != 200:
raise Exception(f"Failed to load JSONL from {jsonl_url}. Status code: {response.status_code}")
# Read and parse the JSONL file line by line
docs = []
for line_number, line in enumerate(response.text.splitlines(), 1):
try:
doc = json.loads(line) # Parse each line as a separate JSON object
content = doc.get('content', "").strip()
if not content:
continue # Skip documents with no content
# Add unique ID to each document
doc['id'] = str(uuid.uuid4())
# Convert the document into a Document object
docs.append(Document(page_content=content, metadata=doc))
except json.JSONDecodeError as e:
print(f"Skipping malformed JSONL line at line {line_number}: {line}")
print(f"Error: {e}")
# -------------------------------
# Step 2: Prepare documents
# -------------------------------
docs = []
for doc in data:
# Ensure the document has 'content' field
content = doc.get('content', "").strip()
if not content:
continue # Skip documents with no content
# Ensure unique ID for each document
doc['id'] = str(uuid.uuid4())
# Create Document objects from the data
docs.append(Document(page_content=content, metadata=doc))
# -------------------------------
# Step 3: Set up HuggingFace Embeddings and FAISS VectorStore
# -------------------------------
# Initialize HuggingFace Embedding model
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
# Create FAISS VectorStore from documents
vector_store = FAISS.from_documents(docs, embedding_model)
# Save the FAISS index locally
vector_store.save_local("faiss_index")
print("✅ FAISS index created and saved locally.")
# -------------------------------
# Step 4: Create Retriever Tool (for use in LangChain)
# -------------------------------
retriever = vector_store.as_retriever()
# Create the retriever tool
question_retriever_tool = create_retriever_tool(
retriever=retriever,
name="Question_Search",
description="A tool to retrieve documents related to a user's question."
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
# Build graph function
def build_graph(provider: str = "google"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
# TODO: Add huggingface endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()