Spaces:
Running
Running
# agent.py | |
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.document_loaders import ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from supabase.client import Client, create_client | |
from sentence_transformers import SentenceTransformer | |
from langchain.embeddings.base import Embeddings | |
from typing import List | |
import numpy as np | |
import yaml | |
import pandas as pd | |
import uuid | |
import requests | |
import json | |
from langchain_core.documents import Document | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable | |
import re | |
from langchain_community.document_loaders import TextLoader, PyMuPDFLoader | |
from docx import Document as DocxDocument | |
import openpyxl | |
from io import StringIO | |
from transformers import BertTokenizer, BertModel | |
import torch | |
load_dotenv() | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"wiki_results": formatted_search_docs} | |
def web_search(query: str) -> str: | |
"""Search Tavily for a query and return maximum 3 results. | |
Args: | |
query: The search query.""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"web_results": formatted_search_docs} | |
def arvix_search(query: str) -> str: | |
"""Search Arxiv for a query and return maximum 3 result. | |
Args: | |
query: The search query.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"arvix_results": formatted_search_docs} | |
def analyze_attachment(file_path: str) -> str: | |
""" | |
Analyzes attachments including PDF, TXT, DOCX, and XLSX files and returns text content. | |
Args: | |
file_path: Local path to the attachment. | |
""" | |
if not os.path.exists(file_path): | |
return f"File not found: {file_path}" | |
if file_path.lower().endswith(".pdf"): | |
loader = PyMuPDFLoader(file_path) | |
documents = loader.load() | |
content = "\n\n".join([doc.page_content for doc in documents]) | |
elif file_path.lower().endswith(".txt"): | |
loader = TextLoader(file_path) | |
documents = loader.load() | |
content = "\n\n".join([doc.page_content for doc in documents]) | |
elif file_path.lower().endswith(".docx"): | |
doc = DocxDocument(file_path) | |
content = "\n".join([para.text for para in doc.paragraphs]) | |
elif file_path.lower().endswith(".xlsx"): | |
wb = openpyxl.load_workbook(file_path, data_only=True) | |
content = "" | |
for sheet in wb: | |
content += f"Sheet: {sheet.title}\n" | |
for row in sheet.iter_rows(values_only=True): | |
content += "\t".join([str(cell) if cell is not None else "" for cell in row]) + "\n" | |
else: | |
return "Unsupported file format. Please use PDF, TXT, DOCX, or XLSX." | |
return content[:3000] # Limit size for readability | |
def get_youtube_transcript(url: str) -> str: | |
""" | |
Fetch transcript text from a YouTube video. | |
Args: | |
url (str): Full YouTube video URL. | |
Returns: | |
str: Transcript text as a single string. | |
Raises: | |
ValueError: If no transcript is available or URL is invalid. | |
""" | |
try: | |
# Extract video ID | |
video_id = extract_video_id(url) | |
transcript = YouTubeTranscriptApi.get_transcript(video_id) | |
# Combine all transcript text | |
full_text = " ".join([entry['text'] for entry in transcript]) | |
return full_text | |
except (TranscriptsDisabled, VideoUnavailable) as e: | |
raise ValueError(f"Transcript not available: {e}") | |
except Exception as e: | |
raise ValueError(f"Failed to fetch transcript: {e}") | |
def extract_video_id(url: str) -> str: | |
""" | |
Extract the video ID from a YouTube URL. | |
""" | |
match = re.search(r"(?:v=|youtu\.be/)([A-Za-z0-9_-]{11})", url) | |
if not match: | |
raise ValueError("Invalid YouTube URL") | |
return match.group(1) | |
# ----------------------------- | |
# Load configuration from YAML | |
# ----------------------------- | |
with open("config.yaml", "r") as f: | |
config = yaml.safe_load(f) | |
provider = config["provider"] | |
model_config = config["models"][provider] | |
#prompt_path = config["system_prompt_path"] | |
enabled_tool_names = config["tools"] | |
# ----------------------------- | |
# Load system prompt | |
# ----------------------------- | |
# load the system prompt from the file | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
# ----------------------------- | |
# Map tool names to functions | |
# ----------------------------- | |
tool_map = { | |
"multiply": multiply, | |
"add": add, | |
"subtract": subtract, | |
"divide": divide, | |
"modulus": modulus, | |
"wiki_search": wiki_search, | |
"web_search": web_search, | |
"arvix_search": arvix_search, | |
"get_youtube_transcript": get_youtube_transcript, | |
"extract_video_id": extract_video_id, | |
"analyze_attachment": analyze_attachment, | |
} | |
tools = [tool_map[name] for name in enabled_tool_names] | |
# ------------------------------- | |
# Step 2: Load the JSON file or tasks (Replace this part if you're loading tasks dynamically) | |
# ------------------------------- | |
# Here we assume the tasks are already fetched from a URL or file. | |
# For now, using an example JSON array directly. Replace this with the actual loading logic. | |
tasks = [ | |
{ | |
"task_id": "8e867cd7-cff9-4e6c-867a-ff5ddc2550be", | |
"question": "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of English Wikipedia.", | |
"Level": "1", | |
"file_name": "" | |
}, | |
{ | |
"task_id": "a1e91b78-d3d8-4675-bb8d-62741b4b68a6", | |
"question": "In the video https://www.youtube.com/watch?v=L1vXCYZAYYM, what is the highest number of bird species to be on camera simultaneously?", | |
"Level": "1", | |
"file_name": "" | |
} | |
] | |
# ------------------------------- | |
# Step 3: Create Documents from Each JSON Object | |
# ------------------------------- | |
docs = [] | |
for task in tasks: | |
# Debugging: Print the keys of each task to ensure 'question' exists | |
print(f"Keys in task: {task.keys()}") | |
# Ensure the required field 'question' exists | |
if 'question' not in task: | |
print(f"Skipping task with missing 'question' field: {task}") | |
continue | |
content = task.get('question', "").strip() | |
if not content: | |
print(f"Skipping task with empty 'question': {task}") | |
continue | |
# Add unique ID to each document | |
task['id'] = str(uuid.uuid4()) | |
# Create a document from the task data | |
docs.append(Document(page_content=content, metadata=task)) | |
# ------------------------------- | |
# Step 4: Set up HuggingFace Embeddings and FAISS VectorStore | |
# ------------------------------- | |
# Initialize HuggingFace Embedding model | |
#embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
#embedding_model = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5") | |
class BERTEmbeddings(Embeddings): | |
def __init__(self, model_name='bert-base-uncased'): | |
self.tokenizer = BertTokenizer.from_pretrained(model_name) | |
self.model = BertModel.from_pretrained(model_name) | |
self.model.eval() # Set to evaluation mode | |
def embed_documents(self, texts: List[str]) -> List[List[float]]: | |
return self._embed(texts) | |
def embed_query(self, text: str) -> List[float]: | |
return self._embed([text])[0] | |
def _embed(self, texts: List[str]) -> List[List[float]]: | |
inputs = self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
embeddings = outputs.last_hidden_state.mean(dim=1) # Mean pooling | |
return embeddings.cpu().numpy().tolist() | |
# Example usage of BERTEmbedding with LangChain | |
embedding_model = BERTEmbeddings(model_name="bert-base-uncased") | |
# Sample text (replace with your own text) | |
docs = [ | |
Document(page_content="Mercedes Sosa released many albums between 2000 and 2009."), | |
Document(page_content="She was a prominent Argentine folk singer."), | |
Document(page_content="Her album 'Al Despertar' was released in 1998."), | |
Document(page_content="She continued releasing music well into the 2000s.") | |
] | |
# Get the embeddings for the documents | |
vector_store = FAISS.from_documents(docs, embedding_model) | |
# Now, you can use the embeddings with FAISS or other retrieval systems | |
# For example, with FAISS: | |
from langchain.vectorstores import FAISS | |
# Assuming 'docs' contains your list of documents and 'embedding_model' is the model you created | |
vector_store = FAISS.from_documents(docs, embedding_model) | |
vector_store.save_local("faiss_index") | |
# ----------------------------- | |
# Step 4: Create Retriever Tool | |
# ----------------------------- | |
retriever = vector_store.as_retriever() | |
question_retriever_tool = create_retriever_tool( | |
retriever=retriever, | |
name="Question_Search", | |
description="A tool to retrieve documents related to a user's question." | |
) | |
def retriever(state: MessagesState): | |
"""Retriever node using similarity scores for filtering""" | |
query = state["messages"][0].content | |
results = vector_store.similarity_search_with_score(query, k=4) # top 4 matches | |
# Filter by score (lower is more similar; adjust threshold as needed) | |
threshold = 0.8 | |
filtered = [doc for doc, score in results if score < threshold] | |
if not filtered: | |
example_msg = HumanMessage(content="No relevant documents found.") | |
else: | |
content = "\n\n".join(doc.page_content for doc in filtered) | |
example_msg = HumanMessage( | |
content=f"Here are relevant reference documents:\n\n{content}" | |
) | |
return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
web_search, | |
arvix_search, | |
] | |
def get_llm(provider: str, config: dict): | |
if provider == "google": | |
return ChatGoogleGenerativeAI(model=config["model"], temperature=config["temperature"]) | |
elif provider == "groq": | |
return ChatGroq(model=config["model"], temperature=config["temperature"]) | |
elif provider == "huggingface": | |
return ChatHuggingFace( | |
llm=HuggingFaceEndpoint(url=config["url"], temperature=config["temperature"]) | |
) | |
else: | |
raise ValueError(f"Invalid provider: {provider}") | |
# Build graph function | |
def build_graph(): | |
"""Build the graph based on provider""" | |
llm = get_llm(provider, model_config) | |
llm_with_tools = llm.bind_tools(tools) | |
# Node | |
def assistant(state: MessagesState): | |
"""Assistant node""" | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
def retriever(state: MessagesState): | |
user_query = state["messages"][0].content | |
similar_docs = vector_store.similarity_search(user_query) | |
if not similar_docs: | |
print("No similar docs found in FAISS. Using wiki_search.") | |
wiki_result = wiki_search.invoke(user_query) | |
return { | |
"messages": [ | |
sys_msg, | |
state["messages"][0], | |
HumanMessage(content=f"Using Wikipedia search:\n\n{wiki_result['wiki_results']}") | |
] | |
} | |
else: | |
return { | |
"messages": [ | |
sys_msg, | |
state["messages"][0], | |
HumanMessage(content=f"Reference question:\n\n{similar_docs[0].page_content}") | |
] | |
} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant") | |
# Compile graph | |
return builder.compile() | |