PicoAudio2 / models /diffusion.py
rookie9's picture
Upload 77 files
f582ec6 verified
raw
history blame
16 kB
from typing import Sequence
import random
from typing import Any
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import diffusers.schedulers as noise_schedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
from models.autoencoder.autoencoder_base import AutoEncoderBase
from models.content_encoder.caption_encoder import ContentEncoder
from models.common import LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase
from utils.torch_utilities import (
create_alignment_path, create_mask_from_length, loss_with_mask,
trim_or_pad_length
)
class DiffusionMixin:
def __init__(
self,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
classifier_free_guidance: bool = True,
cfg_drop_ratio: float = 0.2,
) -> None:
self.noise_scheduler_name = noise_scheduler_name
self.snr_gamma = snr_gamma
self.classifier_free_guidance = classifier_free_guidance
self.cfg_drop_ratio = cfg_drop_ratio
self.noise_scheduler = noise_schedulers.DDIMScheduler.from_pretrained(
self.noise_scheduler_name, subfolder="scheduler"
)
def compute_snr(self, timesteps) -> torch.Tensor:
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod)**0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device
)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
device=timesteps.device
)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[...,
None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma)**2
return snr
def get_timesteps(
self,
batch_size: int,
device: torch.device,
training: bool = True
) -> torch.Tensor:
if training:
timesteps = torch.randint(
0,
self.noise_scheduler.config.num_train_timesteps,
(batch_size, ),
device=device
)
else:
# validation on half of the total timesteps
timesteps = (self.noise_scheduler.config.num_train_timesteps //
2) * torch.ones((batch_size, ),
dtype=torch.int64,
device=device)
timesteps = timesteps.long()
return timesteps
def get_target(
self, latent: torch.Tensor, noise: torch.Tensor,
timesteps: torch.Tensor
) -> torch.Tensor:
"""
Get the target for loss depending on the prediction type
"""
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(
latent, noise, timesteps
)
else:
raise ValueError(
f"Unknown prediction type {self.noise_scheduler.config.prediction_type}"
)
return target
def loss_with_snr(
self, pred: torch.Tensor, target: torch.Tensor,
timesteps: torch.Tensor, mask: torch.Tensor
) -> torch.Tensor:
if self.snr_gamma is None:
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss_with_mask(loss, mask)
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)],
dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss_with_mask(loss, mask, reduce=False) * mse_loss_weights
loss = loss.mean()
return loss
class AudioDiffusion(
LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
DiffusionMixin
):
"""
Args:
autoencoder (AutoEncoderBase): Pretrained autoencoder module VAE(frozen).
content_encoder (ContentEncoder): Encodes TCC and TDC information.
backbone (nn.Module): Main denoising network.
frame_resolution (float): Resolution for audio frames.
noise_scheduler_name (str): Noise scheduler identifier.
snr_gamma (float, optional): SNR gamma for noise scheduler.
classifier_free_guidance (bool): Enable classifier-free guidance.
cfg_drop_ratio (float): Ratio for randomly dropping context for classifier-free guidance.
"""
def __init__(
self,
autoencoder: AutoEncoderBase,
content_encoder: ContentEncoder,
backbone: nn.Module,
frame_resolution:float,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
classifier_free_guidance: bool = True,
cfg_drop_ratio: float = 0.2,
):
nn.Module.__init__(self)
DiffusionMixin.__init__(
self, noise_scheduler_name, snr_gamma, classifier_free_guidance, cfg_drop_ratio
)
self.autoencoder = autoencoder
# Freeze autoencoder parameters
for param in self.autoencoder.parameters():
param.requires_grad = False
self.content_encoder = content_encoder
self.backbone = backbone
self.frame_resolution = frame_resolution
self.dummy_param = nn.Parameter(torch.empty(0))
def forward(
self, content: list[Any], condition: list[Any], task: list[str],
waveform: torch.Tensor, waveform_lengths: torch.Tensor, **kwargs
):
"""
Training forward pass.
Args:
content (list[Any]): List of content dicts for each sample.
condition (list[Any]): Conditioning information (unused here).
task (list[str]): List of task types.
waveform (Tensor): Batch of waveform tensors.
waveform_lengths (Tensor): Lengths for each waveform sample.
Returns:
dict: Dictionary containing the diffusion loss.
"""
device = self.dummy_param.device
num_train_timesteps = self.noise_scheduler.config.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
self.autoencoder.eval()
with torch.no_grad():
latent, latent_mask = self.autoencoder.encode(
waveform.unsqueeze(1), waveform_lengths
)
# content(non_time_aligned_content) for TCC and time_aligned_content for TDC
content, content_mask, onset, _= self.content_encoder.encode_content(
content, device=device
)
# prepare latent and diffusion-related noise
time_aligned_content = onset.permute(0,2,1)
if self.training and self.classifier_free_guidance:
mask_indices = [
k for k in range(len(waveform)) if random.random() < self.cfg_drop_ratio
]
if len(mask_indices) > 0:
content[mask_indices] = 0
time_aligned_content[mask_indices] = 0
batch_size = latent.shape[0]
timesteps = self.get_timesteps(batch_size, device, self.training)
noise = torch.randn_like(latent)
noisy_latent = self.noise_scheduler.add_noise(latent, noise, timesteps)
target = self.get_target(latent, noise, timesteps)
# Denoising prediction
pred: torch.Tensor = self.backbone(
x=noisy_latent,
timesteps=timesteps,
time_aligned_context=time_aligned_content,
context=content,
x_mask=latent_mask,
context_mask=content_mask
)
pred = pred.transpose(1, self.autoencoder.time_dim)
target = target.transpose(1, self.autoencoder.time_dim)
diff_loss = self.loss_with_snr(pred, target, timesteps, latent_mask)
return {
"diff_loss": diff_loss,
}
@torch.no_grad()
def inference(
self,
content: list[Any],
num_steps: int = 20,
guidance_scale: float = 3.0,
guidance_rescale: float = 0.0,
disable_progress: bool = True,
num_samples_per_content: int = 1,
**kwargs
):
"""
Inference/generation method for audio diffusion.
Args:
content (list[Any]): List of content dicts.
scheduler (SchedulerMixin): Scheduler for timesteps and noise.
num_steps (int): Number of denoising steps.
guidance_scale (float): Classifier-free guidance scale.
guidance_rescale (float): Rescale factor for guidance.
disable_progress (bool): Disable progress bar.
num_samples_per_content (int): How many samples to generate per content.
Returns:
waveform (Tensor): Generated waveform.
"""
device = self.dummy_param.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(content) * num_samples_per_content
print(content)
if classifier_free_guidance:
content, content_mask, onset, length_list = self.encode_content_classifier_free(
content, num_samples_per_content
)
else:
content, content_mask, onset, length_list = self.content_encoder.encode_content(
content, device=device
)
content = content.repeat_interleave(num_samples_per_content, 0)
content_mask = content_mask.repeat_interleave(
num_samples_per_content, 0
)
self.noise_scheduler.set_timesteps(num_steps, device=device)
timesteps = self.noise_scheduler.timesteps
# prepare input latent and context for the backbone
shape = (batch_size, 128, onset.shape[2]) # 128 for StableVAE channels
time_aligned_content = onset.permute(0,2,1)
latent = randn_tensor(
shape, generator=None, device=device, dtype=content.dtype
)
# scale the initial noise by the standard deviation required by the scheduler
latent = latent * self.noise_scheduler.init_noise_sigma
latent_mask = torch.full((batch_size, onset.shape[2]), False, device=device)
for i, length in enumerate(length_list):
# Set latent mask True for valid time steps for each sample
latent_mask[i, :length] = True
num_warmup_steps = len(timesteps) - num_steps * self.noise_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
if classifier_free_guidance:
uncond_time_aligned_content = torch.zeros_like(
time_aligned_content
)
time_aligned_content = torch.cat(
[uncond_time_aligned_content, time_aligned_content]
)
latent_mask = torch.cat(
[latent_mask, latent_mask.detach().clone()]
)
# iteratively denoising
for i, timestep in enumerate(timesteps):
latent_input = torch.cat(
[latent, latent]
) if classifier_free_guidance else latent
latent_input = self.noise_scheduler.scale_model_input(latent_input, timestep)
noise_pred = self.backbone(
x=latent_input,
x_mask=latent_mask,
timesteps=timestep,
time_aligned_context=time_aligned_content,
context=content,
context_mask=content_mask,
)
if classifier_free_guidance:
noise_pred_uncond, noise_pred_content = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_content - noise_pred_uncond
)
if guidance_rescale != 0.0:
noise_pred = self.rescale_cfg(
noise_pred_content, noise_pred, guidance_rescale
)
# compute the previous noisy sample x_t -> x_t-1
latent = self.noise_scheduler.step(noise_pred, timestep, latent).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and
(i+1) % self.noise_scheduler.order == 0):
progress_bar.update(1)
#latent = latent.to(next(self.autoencoder.parameters()).device)
waveform = self.autoencoder.decode(latent)
return waveform
def encode_content_classifier_free(
self,
content: list[Any],
task: list[str],
num_samples_per_content: int = 1
):
device = self.dummy_param.device
content, content_mask, onset, length_list = self.content_encoder.encode_content(
content, device=device
)
content = content.repeat_interleave(num_samples_per_content, 0)
content_mask = content_mask.repeat_interleave(
num_samples_per_content, 0
)
# get unconditional embeddings for classifier free guidance
uncond_content = torch.zeros_like(content)
uncond_content_mask = content_mask.detach().clone()
uncond_content = uncond_content.repeat_interleave(
num_samples_per_content, 0
)
uncond_content_mask = uncond_content_mask.repeat_interleave(
num_samples_per_content, 0
)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
content = torch.cat([uncond_content, content])
content_mask = torch.cat([uncond_content_mask, content_mask])
return content, content_mask, onset, length_list
def rescale_cfg(
self, pred_cond: torch.Tensor, pred_cfg: torch.Tensor,
guidance_rescale: float
):
"""
Rescale `pred_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_cond = pred_cond.std(
dim=list(range(1, pred_cond.ndim)), keepdim=True
)
std_cfg = pred_cfg.std(dim=list(range(1, pred_cfg.ndim)), keepdim=True)
pred_rescaled = pred_cfg * (std_cond / std_cfg)
pred_cfg = guidance_rescale * pred_rescaled + (
1 - guidance_rescale
) * pred_cfg