Spaces:
Running
on
Zero
Running
on
Zero
Upload 77 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +77 -0
- models/__pycache__/common.cpython-310.pyc +0 -0
- models/__pycache__/content_adapter.cpython-310.pyc +0 -0
- models/__pycache__/diffusion.cpython-310.pyc +0 -0
- models/__pycache__/diffusion_cfg.cpython-310.pyc +0 -0
- models/__pycache__/diffusion_cfg_new.cpython-310.pyc +0 -0
- models/__pycache__/diffusion_content_cfg.cpython-310.pyc +0 -0
- models/autoencoder/__pycache__/autoencoder_base.cpython-310.pyc +0 -0
- models/autoencoder/autoencoder_base.py +22 -0
- models/autoencoder/waveform/__pycache__/stable_vae.cpython-310.pyc +0 -0
- models/autoencoder/waveform/stable_vae.py +537 -0
- models/common.py +69 -0
- models/content_encoder/__pycache__/caption_encoder.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_add_1024.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_clap.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_clap_test.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_concat.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_concat_4096.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_concat_4096_random.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_full.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_full_non.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_full_non_test.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_full_test.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_full_woonset.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_merge.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_merge_test.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_replace.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_replace_merge.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_replace_new.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_encoder_test.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/content_test.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/new_content_encoder.cpython-310.pyc +0 -0
- models/content_encoder/__pycache__/text_encoder.cpython-310.pyc +0 -0
- models/content_encoder/caption_encoder.py +116 -0
- models/content_encoder/text_encoder.py +76 -0
- models/diffusion.py +398 -0
- models/dit/__pycache__/attention.cpython-310.pyc +0 -0
- models/dit/__pycache__/audio_dit.cpython-310.pyc +0 -0
- models/dit/__pycache__/mask_dit.cpython-310.pyc +0 -0
- models/dit/__pycache__/modules.cpython-310.pyc +0 -0
- models/dit/__pycache__/rotary.cpython-310.pyc +0 -0
- models/dit/__pycache__/span_mask.cpython-310.pyc +0 -0
- models/dit/attention.py +350 -0
- models/dit/audio_diffsingernet_dit.py +520 -0
- models/dit/audio_dit.py +549 -0
- models/dit/mask_dit.py +823 -0
- models/dit/modules.py +445 -0
- models/dit/rotary.py +88 -0
- models/dit/span_mask.py +149 -0
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import torch
|
| 5 |
+
import soundfile as sf
|
| 6 |
+
import numpy as np
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from transformers import AutoModel
|
| 9 |
+
#from utils.llm import get_time_info
|
| 10 |
+
from utils.llm_xiapi import get_time_info
|
| 11 |
+
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
model = AutoModel.from_pretrained("rookie9/PicoAudio2", trust_remote_code=True).to(device)
|
| 14 |
+
print("ok")
|
| 15 |
+
def is_tdc_format_valid(tdc_str):
|
| 16 |
+
try:
|
| 17 |
+
for event_onset in tdc_str.split('--'):
|
| 18 |
+
event, instance = event_onset.split('__')
|
| 19 |
+
for start_end in instance.split('_'):
|
| 20 |
+
start, end = start_end.split('-')
|
| 21 |
+
return True
|
| 22 |
+
except Exception:
|
| 23 |
+
return False
|
| 24 |
+
|
| 25 |
+
def infer(input_text, input_onset, input_length, time_control):
|
| 26 |
+
# para
|
| 27 |
+
if input_onset and not is_tdc_format_valid(input_onset):
|
| 28 |
+
input_onset = "random"
|
| 29 |
+
if time_control:
|
| 30 |
+
if not input_onset or not input_length:
|
| 31 |
+
input_json = json.loads(get_time_info(input_text))
|
| 32 |
+
input_onset, input_length = input_json["onset"], input_json["length"]
|
| 33 |
+
else:
|
| 34 |
+
input_onset = input_onset if input_onset else "random"
|
| 35 |
+
input_length = input_length if input_length else "10.0"
|
| 36 |
+
|
| 37 |
+
content = {
|
| 38 |
+
"caption": input_text,
|
| 39 |
+
"onset": input_onset,
|
| 40 |
+
"length": input_length
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
waveform = model(content)
|
| 46 |
+
output_wav = "output.wav"
|
| 47 |
+
sf.write(
|
| 48 |
+
output_wav,
|
| 49 |
+
waveform[0, 0].cpu().numpy(),
|
| 50 |
+
samplerate=exp_config["sample_rate"],
|
| 51 |
+
)
|
| 52 |
+
return output_wav, str(input_onset)
|
| 53 |
+
|
| 54 |
+
demo = gr.Interface(
|
| 55 |
+
fn=infer,
|
| 56 |
+
inputs=[
|
| 57 |
+
gr.Textbox(label="TCC (caption, required)", value="a dog barks"),
|
| 58 |
+
gr.Textbox(label="TDC (optional, see format)", value="random"),
|
| 59 |
+
gr.Textbox(label="Length (seconds, optional)", value="10.0"),
|
| 60 |
+
gr.Checkbox(label="Enable Time Control", value=False),
|
| 61 |
+
],
|
| 62 |
+
outputs=[
|
| 63 |
+
gr.Audio(label="Generated Audio"),
|
| 64 |
+
gr.Textbox(label="Final TDC Used (input_onset)")
|
| 65 |
+
],
|
| 66 |
+
title="PicoAudio2 Online Inference",
|
| 67 |
+
description=(
|
| 68 |
+
"TCC (caption) is neto generate audio. "
|
| 69 |
+
"If you need time control, please enter TDC and length (in seconds). "
|
| 70 |
+
"Alternatively, you can let the LLM generate TDC, but API quota limits may affect availability. "
|
| 71 |
+
"TDC format: \"event1__start1-end1_start2-end2--event2__start1-end1\", for example: "
|
| 72 |
+
"\"a_dog_barks__1.0-2.0_3.0-4.0--a_man_speaks__5.0-6.0\"."
|
| 73 |
+
"If the format of TDC is wrong or no input length, the model will generate audio without temporal control. Sorry!"
|
| 74 |
+
)
|
| 75 |
+
)
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
demo.launch()
|
models/__pycache__/common.cpython-310.pyc
ADDED
|
Binary file (2.94 kB). View file
|
|
|
models/__pycache__/content_adapter.cpython-310.pyc
ADDED
|
Binary file (3.87 kB). View file
|
|
|
models/__pycache__/diffusion.cpython-310.pyc
ADDED
|
Binary file (10.5 kB). View file
|
|
|
models/__pycache__/diffusion_cfg.cpython-310.pyc
ADDED
|
Binary file (18.9 kB). View file
|
|
|
models/__pycache__/diffusion_cfg_new.cpython-310.pyc
ADDED
|
Binary file (18.8 kB). View file
|
|
|
models/__pycache__/diffusion_content_cfg.cpython-310.pyc
ADDED
|
Binary file (18.5 kB). View file
|
|
|
models/autoencoder/__pycache__/autoencoder_base.cpython-310.pyc
ADDED
|
Binary file (1.06 kB). View file
|
|
|
models/autoencoder/autoencoder_base.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import abstractmethod, ABC
|
| 2 |
+
from typing import Sequence
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class AutoEncoderBase(ABC):
|
| 8 |
+
def __init__(
|
| 9 |
+
self, downsampling_ratio: int, sample_rate: int,
|
| 10 |
+
latent_shape: Sequence[int | None]
|
| 11 |
+
):
|
| 12 |
+
self.downsampling_ratio = downsampling_ratio
|
| 13 |
+
self.sample_rate = sample_rate
|
| 14 |
+
self.latent_token_rate = sample_rate // downsampling_ratio
|
| 15 |
+
self.latent_shape = latent_shape
|
| 16 |
+
self.time_dim = latent_shape.index(None) + 1 # the first dim is batch
|
| 17 |
+
|
| 18 |
+
@abstractmethod
|
| 19 |
+
def encode(
|
| 20 |
+
self, waveform: torch.Tensor, waveform_lengths: torch.Tensor
|
| 21 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 22 |
+
...
|
models/autoencoder/waveform/__pycache__/stable_vae.cpython-310.pyc
ADDED
|
Binary file (12 kB). View file
|
|
|
models/autoencoder/waveform/stable_vae.py
ADDED
|
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Literal, Callable
|
| 2 |
+
import math
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.nn.utils.parametrizations import weight_norm
|
| 8 |
+
import torchaudio
|
| 9 |
+
from alias_free_torch import Activation1d
|
| 10 |
+
|
| 11 |
+
from models.common import LoadPretrainedBase
|
| 12 |
+
from models.autoencoder.autoencoder_base import AutoEncoderBase
|
| 13 |
+
from utils.torch_utilities import remove_key_prefix_factory, create_mask_from_length
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# jit script make it 1.4x faster and save GPU memory
|
| 17 |
+
@torch.jit.script
|
| 18 |
+
def snake_beta(x, alpha, beta):
|
| 19 |
+
return x + (1.0 / (beta+0.000000001)) * pow(torch.sin(x * alpha), 2)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class SnakeBeta(nn.Module):
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
in_features,
|
| 26 |
+
alpha=1.0,
|
| 27 |
+
alpha_trainable=True,
|
| 28 |
+
alpha_logscale=True
|
| 29 |
+
):
|
| 30 |
+
super(SnakeBeta, self).__init__()
|
| 31 |
+
self.in_features = in_features
|
| 32 |
+
|
| 33 |
+
# initialize alpha
|
| 34 |
+
self.alpha_logscale = alpha_logscale
|
| 35 |
+
if self.alpha_logscale:
|
| 36 |
+
# log scale alphas initialized to zeros
|
| 37 |
+
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
|
| 38 |
+
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
|
| 39 |
+
else:
|
| 40 |
+
# linear scale alphas initialized to ones
|
| 41 |
+
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
|
| 42 |
+
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
|
| 43 |
+
|
| 44 |
+
self.alpha.requires_grad = alpha_trainable
|
| 45 |
+
self.beta.requires_grad = alpha_trainable
|
| 46 |
+
|
| 47 |
+
# self.no_div_by_zero = 0.000000001
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1)
|
| 51 |
+
# line up with x to [B, C, T]
|
| 52 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
| 53 |
+
if self.alpha_logscale:
|
| 54 |
+
alpha = torch.exp(alpha)
|
| 55 |
+
beta = torch.exp(beta)
|
| 56 |
+
x = snake_beta(x, alpha, beta)
|
| 57 |
+
|
| 58 |
+
return x
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def WNConv1d(*args, **kwargs):
|
| 62 |
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def WNConvTranspose1d(*args, **kwargs):
|
| 66 |
+
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def get_activation(
|
| 70 |
+
activation: Literal["elu", "snake", "none"],
|
| 71 |
+
antialias=False,
|
| 72 |
+
channels=None
|
| 73 |
+
) -> nn.Module:
|
| 74 |
+
if activation == "elu":
|
| 75 |
+
act = nn.ELU()
|
| 76 |
+
elif activation == "snake":
|
| 77 |
+
act = SnakeBeta(channels)
|
| 78 |
+
elif activation == "none":
|
| 79 |
+
act = nn.Identity()
|
| 80 |
+
else:
|
| 81 |
+
raise ValueError(f"Unknown activation {activation}")
|
| 82 |
+
|
| 83 |
+
if antialias:
|
| 84 |
+
act = Activation1d(act)
|
| 85 |
+
|
| 86 |
+
return act
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class ResidualUnit(nn.Module):
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
in_channels,
|
| 93 |
+
out_channels,
|
| 94 |
+
dilation,
|
| 95 |
+
use_snake=False,
|
| 96 |
+
antialias_activation=False
|
| 97 |
+
):
|
| 98 |
+
super().__init__()
|
| 99 |
+
|
| 100 |
+
self.dilation = dilation
|
| 101 |
+
|
| 102 |
+
padding = (dilation * (7-1)) // 2
|
| 103 |
+
|
| 104 |
+
self.layers = nn.Sequential(
|
| 105 |
+
get_activation(
|
| 106 |
+
"snake" if use_snake else "elu",
|
| 107 |
+
antialias=antialias_activation,
|
| 108 |
+
channels=out_channels
|
| 109 |
+
),
|
| 110 |
+
WNConv1d(
|
| 111 |
+
in_channels=in_channels,
|
| 112 |
+
out_channels=out_channels,
|
| 113 |
+
kernel_size=7,
|
| 114 |
+
dilation=dilation,
|
| 115 |
+
padding=padding
|
| 116 |
+
),
|
| 117 |
+
get_activation(
|
| 118 |
+
"snake" if use_snake else "elu",
|
| 119 |
+
antialias=antialias_activation,
|
| 120 |
+
channels=out_channels
|
| 121 |
+
),
|
| 122 |
+
WNConv1d(
|
| 123 |
+
in_channels=out_channels,
|
| 124 |
+
out_channels=out_channels,
|
| 125 |
+
kernel_size=1
|
| 126 |
+
)
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
def forward(self, x):
|
| 130 |
+
res = x
|
| 131 |
+
|
| 132 |
+
#x = checkpoint(self.layers, x)
|
| 133 |
+
x = self.layers(x)
|
| 134 |
+
|
| 135 |
+
return x + res
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class EncoderBlock(nn.Module):
|
| 139 |
+
def __init__(
|
| 140 |
+
self,
|
| 141 |
+
in_channels,
|
| 142 |
+
out_channels,
|
| 143 |
+
stride,
|
| 144 |
+
use_snake=False,
|
| 145 |
+
antialias_activation=False
|
| 146 |
+
):
|
| 147 |
+
super().__init__()
|
| 148 |
+
|
| 149 |
+
self.layers = nn.Sequential(
|
| 150 |
+
ResidualUnit(
|
| 151 |
+
in_channels=in_channels,
|
| 152 |
+
out_channels=in_channels,
|
| 153 |
+
dilation=1,
|
| 154 |
+
use_snake=use_snake
|
| 155 |
+
),
|
| 156 |
+
ResidualUnit(
|
| 157 |
+
in_channels=in_channels,
|
| 158 |
+
out_channels=in_channels,
|
| 159 |
+
dilation=3,
|
| 160 |
+
use_snake=use_snake
|
| 161 |
+
),
|
| 162 |
+
ResidualUnit(
|
| 163 |
+
in_channels=in_channels,
|
| 164 |
+
out_channels=in_channels,
|
| 165 |
+
dilation=9,
|
| 166 |
+
use_snake=use_snake
|
| 167 |
+
),
|
| 168 |
+
get_activation(
|
| 169 |
+
"snake" if use_snake else "elu",
|
| 170 |
+
antialias=antialias_activation,
|
| 171 |
+
channels=in_channels
|
| 172 |
+
),
|
| 173 |
+
WNConv1d(
|
| 174 |
+
in_channels=in_channels,
|
| 175 |
+
out_channels=out_channels,
|
| 176 |
+
kernel_size=2 * stride,
|
| 177 |
+
stride=stride,
|
| 178 |
+
padding=math.ceil(stride / 2)
|
| 179 |
+
),
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
def forward(self, x):
|
| 183 |
+
return self.layers(x)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class DecoderBlock(nn.Module):
|
| 187 |
+
def __init__(
|
| 188 |
+
self,
|
| 189 |
+
in_channels,
|
| 190 |
+
out_channels,
|
| 191 |
+
stride,
|
| 192 |
+
use_snake=False,
|
| 193 |
+
antialias_activation=False,
|
| 194 |
+
use_nearest_upsample=False
|
| 195 |
+
):
|
| 196 |
+
super().__init__()
|
| 197 |
+
|
| 198 |
+
if use_nearest_upsample:
|
| 199 |
+
upsample_layer = nn.Sequential(
|
| 200 |
+
nn.Upsample(scale_factor=stride, mode="nearest"),
|
| 201 |
+
WNConv1d(
|
| 202 |
+
in_channels=in_channels,
|
| 203 |
+
out_channels=out_channels,
|
| 204 |
+
kernel_size=2 * stride,
|
| 205 |
+
stride=1,
|
| 206 |
+
bias=False,
|
| 207 |
+
padding='same'
|
| 208 |
+
)
|
| 209 |
+
)
|
| 210 |
+
else:
|
| 211 |
+
upsample_layer = WNConvTranspose1d(
|
| 212 |
+
in_channels=in_channels,
|
| 213 |
+
out_channels=out_channels,
|
| 214 |
+
kernel_size=2 * stride,
|
| 215 |
+
stride=stride,
|
| 216 |
+
padding=math.ceil(stride / 2)
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
self.layers = nn.Sequential(
|
| 220 |
+
get_activation(
|
| 221 |
+
"snake" if use_snake else "elu",
|
| 222 |
+
antialias=antialias_activation,
|
| 223 |
+
channels=in_channels
|
| 224 |
+
),
|
| 225 |
+
upsample_layer,
|
| 226 |
+
ResidualUnit(
|
| 227 |
+
in_channels=out_channels,
|
| 228 |
+
out_channels=out_channels,
|
| 229 |
+
dilation=1,
|
| 230 |
+
use_snake=use_snake
|
| 231 |
+
),
|
| 232 |
+
ResidualUnit(
|
| 233 |
+
in_channels=out_channels,
|
| 234 |
+
out_channels=out_channels,
|
| 235 |
+
dilation=3,
|
| 236 |
+
use_snake=use_snake
|
| 237 |
+
),
|
| 238 |
+
ResidualUnit(
|
| 239 |
+
in_channels=out_channels,
|
| 240 |
+
out_channels=out_channels,
|
| 241 |
+
dilation=9,
|
| 242 |
+
use_snake=use_snake
|
| 243 |
+
),
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
def forward(self, x):
|
| 247 |
+
return self.layers(x)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class OobleckEncoder(nn.Module):
|
| 251 |
+
def __init__(
|
| 252 |
+
self,
|
| 253 |
+
in_channels=2,
|
| 254 |
+
channels=128,
|
| 255 |
+
latent_dim=32,
|
| 256 |
+
c_mults=[1, 2, 4, 8],
|
| 257 |
+
strides=[2, 4, 8, 8],
|
| 258 |
+
use_snake=False,
|
| 259 |
+
antialias_activation=False
|
| 260 |
+
):
|
| 261 |
+
super().__init__()
|
| 262 |
+
|
| 263 |
+
c_mults = [1] + c_mults
|
| 264 |
+
|
| 265 |
+
self.depth = len(c_mults)
|
| 266 |
+
|
| 267 |
+
layers = [
|
| 268 |
+
WNConv1d(
|
| 269 |
+
in_channels=in_channels,
|
| 270 |
+
out_channels=c_mults[0] * channels,
|
| 271 |
+
kernel_size=7,
|
| 272 |
+
padding=3
|
| 273 |
+
)
|
| 274 |
+
]
|
| 275 |
+
|
| 276 |
+
for i in range(self.depth - 1):
|
| 277 |
+
layers += [
|
| 278 |
+
EncoderBlock(
|
| 279 |
+
in_channels=c_mults[i] * channels,
|
| 280 |
+
out_channels=c_mults[i + 1] * channels,
|
| 281 |
+
stride=strides[i],
|
| 282 |
+
use_snake=use_snake
|
| 283 |
+
)
|
| 284 |
+
]
|
| 285 |
+
|
| 286 |
+
layers += [
|
| 287 |
+
get_activation(
|
| 288 |
+
"snake" if use_snake else "elu",
|
| 289 |
+
antialias=antialias_activation,
|
| 290 |
+
channels=c_mults[-1] * channels
|
| 291 |
+
),
|
| 292 |
+
WNConv1d(
|
| 293 |
+
in_channels=c_mults[-1] * channels,
|
| 294 |
+
out_channels=latent_dim,
|
| 295 |
+
kernel_size=3,
|
| 296 |
+
padding=1
|
| 297 |
+
)
|
| 298 |
+
]
|
| 299 |
+
|
| 300 |
+
self.layers = nn.Sequential(*layers)
|
| 301 |
+
|
| 302 |
+
def forward(self, x):
|
| 303 |
+
return self.layers(x)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class OobleckDecoder(nn.Module):
|
| 307 |
+
def __init__(
|
| 308 |
+
self,
|
| 309 |
+
out_channels=2,
|
| 310 |
+
channels=128,
|
| 311 |
+
latent_dim=32,
|
| 312 |
+
c_mults=[1, 2, 4, 8],
|
| 313 |
+
strides=[2, 4, 8, 8],
|
| 314 |
+
use_snake=False,
|
| 315 |
+
antialias_activation=False,
|
| 316 |
+
use_nearest_upsample=False,
|
| 317 |
+
final_tanh=True
|
| 318 |
+
):
|
| 319 |
+
super().__init__()
|
| 320 |
+
|
| 321 |
+
c_mults = [1] + c_mults
|
| 322 |
+
|
| 323 |
+
self.depth = len(c_mults)
|
| 324 |
+
|
| 325 |
+
layers = [
|
| 326 |
+
WNConv1d(
|
| 327 |
+
in_channels=latent_dim,
|
| 328 |
+
out_channels=c_mults[-1] * channels,
|
| 329 |
+
kernel_size=7,
|
| 330 |
+
padding=3
|
| 331 |
+
),
|
| 332 |
+
]
|
| 333 |
+
|
| 334 |
+
for i in range(self.depth - 1, 0, -1):
|
| 335 |
+
layers += [
|
| 336 |
+
DecoderBlock(
|
| 337 |
+
in_channels=c_mults[i] * channels,
|
| 338 |
+
out_channels=c_mults[i - 1] * channels,
|
| 339 |
+
stride=strides[i - 1],
|
| 340 |
+
use_snake=use_snake,
|
| 341 |
+
antialias_activation=antialias_activation,
|
| 342 |
+
use_nearest_upsample=use_nearest_upsample
|
| 343 |
+
)
|
| 344 |
+
]
|
| 345 |
+
|
| 346 |
+
layers += [
|
| 347 |
+
get_activation(
|
| 348 |
+
"snake" if use_snake else "elu",
|
| 349 |
+
antialias=antialias_activation,
|
| 350 |
+
channels=c_mults[0] * channels
|
| 351 |
+
),
|
| 352 |
+
WNConv1d(
|
| 353 |
+
in_channels=c_mults[0] * channels,
|
| 354 |
+
out_channels=out_channels,
|
| 355 |
+
kernel_size=7,
|
| 356 |
+
padding=3,
|
| 357 |
+
bias=False
|
| 358 |
+
),
|
| 359 |
+
nn.Tanh() if final_tanh else nn.Identity()
|
| 360 |
+
]
|
| 361 |
+
|
| 362 |
+
self.layers = nn.Sequential(*layers)
|
| 363 |
+
|
| 364 |
+
def forward(self, x):
|
| 365 |
+
return self.layers(x)
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class Bottleneck(nn.Module):
|
| 369 |
+
def __init__(self, is_discrete: bool = False):
|
| 370 |
+
super().__init__()
|
| 371 |
+
|
| 372 |
+
self.is_discrete = is_discrete
|
| 373 |
+
|
| 374 |
+
def encode(self, x, return_info=False, **kwargs):
|
| 375 |
+
raise NotImplementedError
|
| 376 |
+
|
| 377 |
+
def decode(self, x):
|
| 378 |
+
raise NotImplementedError
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
@torch.jit.script
|
| 382 |
+
def vae_sample(mean, scale) -> dict[str, torch.Tensor]:
|
| 383 |
+
stdev = nn.functional.softplus(scale) + 1e-4
|
| 384 |
+
var = stdev * stdev
|
| 385 |
+
logvar = torch.log(var)
|
| 386 |
+
latents = torch.randn_like(mean) * stdev + mean
|
| 387 |
+
|
| 388 |
+
kl = (mean*mean + var - logvar - 1).sum(1).mean()
|
| 389 |
+
return {"latents": latents, "kl": kl}
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
class VAEBottleneck(Bottleneck):
|
| 393 |
+
def __init__(self):
|
| 394 |
+
super().__init__(is_discrete=False)
|
| 395 |
+
|
| 396 |
+
def encode(self,
|
| 397 |
+
x,
|
| 398 |
+
return_info=False,
|
| 399 |
+
**kwargs) -> dict[str, torch.Tensor] | torch.Tensor:
|
| 400 |
+
mean, scale = x.chunk(2, dim=1)
|
| 401 |
+
sampled = vae_sample(mean, scale)
|
| 402 |
+
|
| 403 |
+
if return_info:
|
| 404 |
+
return sampled["latents"], {"kl": sampled["kl"]}
|
| 405 |
+
else:
|
| 406 |
+
return sampled["latents"]
|
| 407 |
+
|
| 408 |
+
def decode(self, x):
|
| 409 |
+
return x
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
def compute_mean_kernel(x, y):
|
| 413 |
+
kernel_input = (x[:, None] - y[None]).pow(2).mean(2) / x.shape[-1]
|
| 414 |
+
return torch.exp(-kernel_input).mean()
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
class Pretransform(nn.Module):
|
| 418 |
+
def __init__(self, enable_grad, io_channels, is_discrete):
|
| 419 |
+
super().__init__()
|
| 420 |
+
|
| 421 |
+
self.is_discrete = is_discrete
|
| 422 |
+
self.io_channels = io_channels
|
| 423 |
+
self.encoded_channels = None
|
| 424 |
+
self.downsampling_ratio = None
|
| 425 |
+
|
| 426 |
+
self.enable_grad = enable_grad
|
| 427 |
+
|
| 428 |
+
def encode(self, x):
|
| 429 |
+
raise NotImplementedError
|
| 430 |
+
|
| 431 |
+
def decode(self, z):
|
| 432 |
+
raise NotImplementedError
|
| 433 |
+
|
| 434 |
+
def tokenize(self, x):
|
| 435 |
+
raise NotImplementedError
|
| 436 |
+
|
| 437 |
+
def decode_tokens(self, tokens):
|
| 438 |
+
raise NotImplementedError
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
class StableVAE(LoadPretrainedBase, AutoEncoderBase):
|
| 442 |
+
def __init__(
|
| 443 |
+
self,
|
| 444 |
+
encoder,
|
| 445 |
+
decoder,
|
| 446 |
+
latent_dim,
|
| 447 |
+
downsampling_ratio,
|
| 448 |
+
sample_rate,
|
| 449 |
+
io_channels=2,
|
| 450 |
+
bottleneck: Bottleneck = None,
|
| 451 |
+
pretransform: Pretransform = None,
|
| 452 |
+
in_channels=None,
|
| 453 |
+
out_channels=None,
|
| 454 |
+
soft_clip=False,
|
| 455 |
+
pretrained_ckpt: str | Path = None
|
| 456 |
+
):
|
| 457 |
+
LoadPretrainedBase.__init__(self)
|
| 458 |
+
AutoEncoderBase.__init__(
|
| 459 |
+
self,
|
| 460 |
+
downsampling_ratio=downsampling_ratio,
|
| 461 |
+
sample_rate=sample_rate,
|
| 462 |
+
latent_shape=(latent_dim, None)
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
self.latent_dim = latent_dim
|
| 466 |
+
self.io_channels = io_channels
|
| 467 |
+
self.in_channels = io_channels
|
| 468 |
+
self.out_channels = io_channels
|
| 469 |
+
self.min_length = self.downsampling_ratio
|
| 470 |
+
|
| 471 |
+
if in_channels is not None:
|
| 472 |
+
self.in_channels = in_channels
|
| 473 |
+
|
| 474 |
+
if out_channels is not None:
|
| 475 |
+
self.out_channels = out_channels
|
| 476 |
+
|
| 477 |
+
self.bottleneck = bottleneck
|
| 478 |
+
self.encoder = encoder
|
| 479 |
+
self.decoder = decoder
|
| 480 |
+
self.pretransform = pretransform
|
| 481 |
+
self.soft_clip = soft_clip
|
| 482 |
+
self.is_discrete = self.bottleneck is not None and self.bottleneck.is_discrete
|
| 483 |
+
|
| 484 |
+
self.remove_autoencoder_prefix_fn: Callable = remove_key_prefix_factory(
|
| 485 |
+
"autoencoder."
|
| 486 |
+
)
|
| 487 |
+
if pretrained_ckpt is not None:
|
| 488 |
+
self.load_pretrained(pretrained_ckpt)
|
| 489 |
+
|
| 490 |
+
def process_state_dict(self, model_dict, state_dict):
|
| 491 |
+
state_dict = state_dict["state_dict"]
|
| 492 |
+
state_dict = self.remove_autoencoder_prefix_fn(model_dict, state_dict)
|
| 493 |
+
return state_dict
|
| 494 |
+
|
| 495 |
+
def encode(
|
| 496 |
+
self, waveform: torch.Tensor, waveform_lengths: torch.Tensor
|
| 497 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 498 |
+
z = self.encoder(waveform)
|
| 499 |
+
z = self.bottleneck.encode(z)
|
| 500 |
+
z_length = waveform_lengths // self.downsampling_ratio
|
| 501 |
+
z_mask = create_mask_from_length(z_length)
|
| 502 |
+
return z, z_mask
|
| 503 |
+
|
| 504 |
+
def decode(self, latents: torch.Tensor) -> torch.Tensor:
|
| 505 |
+
waveform = self.decoder(latents)
|
| 506 |
+
return waveform
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
if __name__ == '__main__':
|
| 510 |
+
import hydra
|
| 511 |
+
from utils.config import generate_config_from_command_line_overrides
|
| 512 |
+
model_config = generate_config_from_command_line_overrides(
|
| 513 |
+
"configs/model/autoencoder/stable_vae.yaml"
|
| 514 |
+
)
|
| 515 |
+
autoencoder: StableVAE = hydra.utils.instantiate(model_config)
|
| 516 |
+
autoencoder.eval()
|
| 517 |
+
|
| 518 |
+
waveform, sr = torchaudio.load(
|
| 519 |
+
"/hpc_stor03/sjtu_home/xuenan.xu/workspace/singing_voice_synthesis/diffsinger/data/raw/opencpop/segments/wavs/2007000230.wav"
|
| 520 |
+
)
|
| 521 |
+
waveform = torchaudio.functional.resample(
|
| 522 |
+
waveform, sr, model_config["sample_rate"]
|
| 523 |
+
)
|
| 524 |
+
print("waveform: ", waveform.shape)
|
| 525 |
+
with torch.no_grad():
|
| 526 |
+
latent, latent_length = autoencoder.encode(
|
| 527 |
+
waveform, torch.as_tensor([waveform.shape[-1]])
|
| 528 |
+
)
|
| 529 |
+
print("latent: ", latent.shape)
|
| 530 |
+
reconstructed = autoencoder.decode(latent)
|
| 531 |
+
print("reconstructed: ", reconstructed.shape)
|
| 532 |
+
import soundfile as sf
|
| 533 |
+
sf.write(
|
| 534 |
+
"./reconstructed.wav",
|
| 535 |
+
reconstructed[0, 0].numpy(),
|
| 536 |
+
samplerate=model_config["sample_rate"]
|
| 537 |
+
)
|
models/common.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from utils.torch_utilities import load_pretrained_model, merge_matched_keys
|
| 5 |
+
import warnings
|
| 6 |
+
|
| 7 |
+
class LoadPretrainedBase(nn.Module):
|
| 8 |
+
def process_state_dict(
|
| 9 |
+
self, model_dict: dict[str, torch.Tensor],
|
| 10 |
+
state_dict: dict[str, torch.Tensor]
|
| 11 |
+
):
|
| 12 |
+
"""
|
| 13 |
+
Custom processing functions of each model that transforms `state_dict` loaded from
|
| 14 |
+
checkpoints to the state that can be used in `load_state_dict`.
|
| 15 |
+
Use `merge_mathced_keys` to update parameters with matched names and shapes by
|
| 16 |
+
default.
|
| 17 |
+
|
| 18 |
+
Args
|
| 19 |
+
model_dict:
|
| 20 |
+
The state dict of the current model, which is going to load pretrained parameters
|
| 21 |
+
state_dict:
|
| 22 |
+
A dictionary of parameters from a pre-trained model.
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
dict[str, torch.Tensor]:
|
| 26 |
+
The updated state dict, where parameters with matched keys and shape are
|
| 27 |
+
updated with values in `state_dict`.
|
| 28 |
+
"""
|
| 29 |
+
state_dict = merge_matched_keys(model_dict, state_dict)
|
| 30 |
+
return state_dict
|
| 31 |
+
|
| 32 |
+
def load_pretrained(self, ckpt_path: str | Path):
|
| 33 |
+
load_pretrained_model(
|
| 34 |
+
self, ckpt_path, state_dict_process_fn=self.process_state_dict
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class CountParamsBase(nn.Module):
|
| 39 |
+
def count_params(self):
|
| 40 |
+
num_params = 0
|
| 41 |
+
trainable_params = 0
|
| 42 |
+
for param in self.parameters():
|
| 43 |
+
num_params += param.numel()
|
| 44 |
+
if param.requires_grad:
|
| 45 |
+
trainable_params += param.numel()
|
| 46 |
+
return num_params, trainable_params
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class SaveTrainableParamsBase(nn.Module):
|
| 50 |
+
@property
|
| 51 |
+
def param_names_to_save(self):
|
| 52 |
+
names = []
|
| 53 |
+
for name, param in self.named_parameters():
|
| 54 |
+
if param.requires_grad:
|
| 55 |
+
names.append(name)
|
| 56 |
+
for name, _ in self.named_buffers():
|
| 57 |
+
names.append(name)
|
| 58 |
+
return names
|
| 59 |
+
|
| 60 |
+
def load_state_dict(self, state_dict, strict=True, assign=True):
|
| 61 |
+
print("State dict keys:", list(state_dict.keys()))
|
| 62 |
+
#for key in self.param_names_to_save:
|
| 63 |
+
# if key not in state_dict:
|
| 64 |
+
# raise Exception(
|
| 65 |
+
# f"{key} not found in either pre-trained models (e.g. BERT)"
|
| 66 |
+
# " or resumed checkpoints (e.g. epoch_40/model.pt)"
|
| 67 |
+
# )
|
| 68 |
+
# 兼容 PyTorch/transformers 的 assign 参数
|
| 69 |
+
return super().load_state_dict(state_dict, strict=strict, assign=assign)
|
models/content_encoder/__pycache__/caption_encoder.cpython-310.pyc
ADDED
|
Binary file (3.51 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder.cpython-310.pyc
ADDED
|
Binary file (4.72 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_add_1024.cpython-310.pyc
ADDED
|
Binary file (4.62 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_clap.cpython-310.pyc
ADDED
|
Binary file (6.11 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_clap_test.cpython-310.pyc
ADDED
|
Binary file (6.12 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_concat.cpython-310.pyc
ADDED
|
Binary file (4.74 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_concat_4096.cpython-310.pyc
ADDED
|
Binary file (4.69 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_concat_4096_random.cpython-310.pyc
ADDED
|
Binary file (4.73 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_full.cpython-310.pyc
ADDED
|
Binary file (5.01 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_full_non.cpython-310.pyc
ADDED
|
Binary file (5 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_full_non_test.cpython-310.pyc
ADDED
|
Binary file (4.87 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_full_test.cpython-310.pyc
ADDED
|
Binary file (4.48 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_full_woonset.cpython-310.pyc
ADDED
|
Binary file (4.59 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_merge.cpython-310.pyc
ADDED
|
Binary file (4.78 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_merge_test.cpython-310.pyc
ADDED
|
Binary file (4.82 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_replace.cpython-310.pyc
ADDED
|
Binary file (4.71 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_replace_merge.cpython-310.pyc
ADDED
|
Binary file (4.72 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_replace_new.cpython-310.pyc
ADDED
|
Binary file (4.71 kB). View file
|
|
|
models/content_encoder/__pycache__/content_encoder_test.cpython-310.pyc
ADDED
|
Binary file (4.58 kB). View file
|
|
|
models/content_encoder/__pycache__/content_test.cpython-310.pyc
ADDED
|
Binary file (4.71 kB). View file
|
|
|
models/content_encoder/__pycache__/new_content_encoder.cpython-310.pyc
ADDED
|
Binary file (4.73 kB). View file
|
|
|
models/content_encoder/__pycache__/text_encoder.cpython-310.pyc
ADDED
|
Binary file (2.71 kB). View file
|
|
|
models/content_encoder/caption_encoder.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import random
|
| 5 |
+
from utils.audiotime_event_merge import replace_event_synonyms
|
| 6 |
+
|
| 7 |
+
def decode_data(line_onset_str, latent_length):
|
| 8 |
+
"""
|
| 9 |
+
Extracts a timestamp matrix (event onset indices) from a formatted onset string.
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
line_onset_str (str): String containing event names and onset intervals,
|
| 13 |
+
formatted like "event1__start1-end1_start2-end2--event2__start1-end1".
|
| 14 |
+
latent_length (int): Length of the output matrix.
|
| 15 |
+
|
| 16 |
+
Returns:
|
| 17 |
+
line_onset_index (torch.Tensor): Matrix of shape [4, latent_length],
|
| 18 |
+
line_event (list): List of event names extracted from the onset string.
|
| 19 |
+
|
| 20 |
+
Notes:
|
| 21 |
+
- 24000 is the audio sample rate.
|
| 22 |
+
- 480 is the downsample ratio to align with VAE.
|
| 23 |
+
- Each onset interval "start-end" (in seconds) is converted to embedding indices via (time * 24000 / 480).
|
| 24 |
+
"""
|
| 25 |
+
line_onset_index = torch.zeros((4, latent_length)) # max for 4 events
|
| 26 |
+
line_event = []
|
| 27 |
+
event_idx = 0
|
| 28 |
+
for event_onset in line_onset_str.split('--'):
|
| 29 |
+
#print(event_onset)
|
| 30 |
+
(event, instance) = event_onset.split('__')
|
| 31 |
+
#print(instance)
|
| 32 |
+
line_event.append(event)
|
| 33 |
+
for start_end in instance.split('_'):
|
| 34 |
+
(start, end) = start_end.split('-')
|
| 35 |
+
start, end = int(float(start)*24000/480), int(float(end)*24000/480)
|
| 36 |
+
if end > (latent_length - 1): break
|
| 37 |
+
line_onset_index[event_idx, start: end] = 1
|
| 38 |
+
event_idx = event_idx + 1
|
| 39 |
+
return line_onset_index, line_event
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class ContentEncoder(nn.Module):
|
| 43 |
+
"""
|
| 44 |
+
ContentEncoder encodes TCC and TDC information.
|
| 45 |
+
"""
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
text_encoder: nn.Module= None,
|
| 49 |
+
):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.text_encoder = text_encoder
|
| 52 |
+
self.pool = nn.AdaptiveAvgPool1d(1)
|
| 53 |
+
|
| 54 |
+
def encode_content(
|
| 55 |
+
self, batch_content: list[Any], device: str | torch.device
|
| 56 |
+
):
|
| 57 |
+
batch_output = []
|
| 58 |
+
batch_mask = []
|
| 59 |
+
batch_onset = []
|
| 60 |
+
length_list = []
|
| 61 |
+
print(batch_content)
|
| 62 |
+
for content in batch_content:
|
| 63 |
+
|
| 64 |
+
caption = content["caption"]
|
| 65 |
+
onset = content["onset"]
|
| 66 |
+
length = int(float(content["length"]) *24000/480)
|
| 67 |
+
# Replacement for AudioTime
|
| 68 |
+
print(onset)
|
| 69 |
+
replace_label = content.get("replace_label", "False")
|
| 70 |
+
if replace_label == "True":
|
| 71 |
+
caption, onset = replace_event_synonyms(caption, onset)
|
| 72 |
+
|
| 73 |
+
# Handle random onset case for read data without timestamp
|
| 74 |
+
if content["onset"] == "random":
|
| 75 |
+
length_list.append(length)
|
| 76 |
+
"""
|
| 77 |
+
fixed embedding. Actually it's a sick sentence, a error during training, kept to match the checkpoint.
|
| 78 |
+
You can change it to sentence that difference to captions in datasets.
|
| 79 |
+
The use of fixed text to obtain encoding is for numerical stability.
|
| 80 |
+
We attempted to use learnable unified encoding during training, but the results were not satisfactory.
|
| 81 |
+
"""
|
| 82 |
+
event = "There is no event here"
|
| 83 |
+
event_embed = self.text_encoder([event.replace("_", " ")])["output"]
|
| 84 |
+
event_embed = self.pool(event_embed.permute(0, 2, 1)) # (B, 1024, 1)
|
| 85 |
+
event_embed = event_embed.flatten().unsqueeze(0)
|
| 86 |
+
new_onset = event_embed.repeat(length, 1).T
|
| 87 |
+
else:
|
| 88 |
+
onset_matrix, events = decode_data(onset, length)
|
| 89 |
+
length_list.append(length)
|
| 90 |
+
new_onset = torch.zeros((1024, length), device=device) # 1024 for T5
|
| 91 |
+
# TDC
|
| 92 |
+
for (idx, event) in enumerate(events):
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
event_embed = self.text_encoder([event.replace("_", " ")])["output"]
|
| 95 |
+
event_embed = self.pool(event_embed.permute(0, 2, 1)) # (B, 1024, 1)
|
| 96 |
+
event_embed = event_embed.flatten().unsqueeze(0)
|
| 97 |
+
mask = (onset_matrix[idx, :] == 0)
|
| 98 |
+
cols = mask.nonzero(as_tuple=True)[0]
|
| 99 |
+
new_onset[:, cols] += event_embed.T.float()
|
| 100 |
+
# TCC
|
| 101 |
+
output_dict = self.text_encoder([caption])
|
| 102 |
+
batch_output.append(output_dict["output"][0])
|
| 103 |
+
batch_mask.append(output_dict["mask"][0])
|
| 104 |
+
batch_onset.append(new_onset)
|
| 105 |
+
|
| 106 |
+
# Pad all sequences in the batch to the same length for batching
|
| 107 |
+
batch_output = nn.utils.rnn.pad_sequence(
|
| 108 |
+
batch_output, batch_first=True, padding_value=0
|
| 109 |
+
)
|
| 110 |
+
batch_mask = nn.utils.rnn.pad_sequence(
|
| 111 |
+
batch_mask, batch_first=True, padding_value=False
|
| 112 |
+
)
|
| 113 |
+
batch_onset = nn.utils.rnn.pad_sequence(
|
| 114 |
+
batch_onset, batch_first=True, padding_value=0
|
| 115 |
+
)
|
| 116 |
+
return batch_output, batch_mask, batch_onset, length_list
|
models/content_encoder/text_encoder.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel, T5Tokenizer, T5EncoderModel
|
| 4 |
+
from transformers.modeling_outputs import BaseModelOutput
|
| 5 |
+
|
| 6 |
+
try:
|
| 7 |
+
import torch_npu
|
| 8 |
+
from torch_npu.contrib import transfer_to_npu
|
| 9 |
+
DEVICE_TYPE = "npu"
|
| 10 |
+
except ModuleNotFoundError:
|
| 11 |
+
DEVICE_TYPE = "cuda"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class TransformersTextEncoderBase(nn.Module):
|
| 15 |
+
"""
|
| 16 |
+
Base class for text encoding using HuggingFace Transformers models.
|
| 17 |
+
|
| 18 |
+
"""
|
| 19 |
+
def __init__(self, model_name: str):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 22 |
+
self.model = AutoModel.from_pretrained(model_name)
|
| 23 |
+
|
| 24 |
+
def forward(
|
| 25 |
+
self,
|
| 26 |
+
text: list[str],
|
| 27 |
+
):
|
| 28 |
+
device = self.model.device
|
| 29 |
+
batch = self.tokenizer(
|
| 30 |
+
text,
|
| 31 |
+
max_length=self.tokenizer.model_max_length,
|
| 32 |
+
padding=True,
|
| 33 |
+
truncation=True,
|
| 34 |
+
return_tensors="pt"
|
| 35 |
+
)
|
| 36 |
+
input_ids = batch.input_ids.to(device)
|
| 37 |
+
attention_mask = batch.attention_mask.to(device)
|
| 38 |
+
output: BaseModelOutput = self.model(
|
| 39 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 40 |
+
)
|
| 41 |
+
output = output.last_hidden_state
|
| 42 |
+
mask = (attention_mask == 1).to(device)
|
| 43 |
+
|
| 44 |
+
return {"output": output, "mask": mask}
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class T5TextEncoder(TransformersTextEncoderBase):
|
| 48 |
+
"""
|
| 49 |
+
Text encoder using T5 encoder model.
|
| 50 |
+
"""
|
| 51 |
+
def __init__(self, model_name: str = "/mnt/petrelfs/zhengzihao/cache/google-flan-t5-large"):
|
| 52 |
+
nn.Module.__init__(self)
|
| 53 |
+
self.tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 54 |
+
self.model = T5EncoderModel.from_pretrained(model_name)
|
| 55 |
+
for param in self.model.parameters():
|
| 56 |
+
param.requires_grad = False
|
| 57 |
+
self.eval()
|
| 58 |
+
|
| 59 |
+
def forward(
|
| 60 |
+
self,
|
| 61 |
+
text: list[str],
|
| 62 |
+
):
|
| 63 |
+
with torch.no_grad(), torch.amp.autocast(
|
| 64 |
+
device_type=DEVICE_TYPE, enabled=False
|
| 65 |
+
):
|
| 66 |
+
return super().forward(text)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
if __name__ == '__main__':
|
| 70 |
+
text_encoder = T5TextEncoder()
|
| 71 |
+
text = ["dog barking and cat moving"]
|
| 72 |
+
text_encoder.eval()
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
output = text_encoder(text)
|
| 75 |
+
print(output["output"].shape)
|
| 76 |
+
#print(output)
|
models/diffusion.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Sequence
|
| 2 |
+
import random
|
| 3 |
+
from typing import Any
|
| 4 |
+
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
import diffusers.schedulers as noise_schedulers
|
| 10 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
| 11 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
from models.autoencoder.autoencoder_base import AutoEncoderBase
|
| 15 |
+
from models.content_encoder.caption_encoder import ContentEncoder
|
| 16 |
+
from models.common import LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase
|
| 17 |
+
from utils.torch_utilities import (
|
| 18 |
+
create_alignment_path, create_mask_from_length, loss_with_mask,
|
| 19 |
+
trim_or_pad_length
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class DiffusionMixin:
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
|
| 27 |
+
snr_gamma: float = None,
|
| 28 |
+
classifier_free_guidance: bool = True,
|
| 29 |
+
cfg_drop_ratio: float = 0.2,
|
| 30 |
+
|
| 31 |
+
) -> None:
|
| 32 |
+
self.noise_scheduler_name = noise_scheduler_name
|
| 33 |
+
self.snr_gamma = snr_gamma
|
| 34 |
+
self.classifier_free_guidance = classifier_free_guidance
|
| 35 |
+
self.cfg_drop_ratio = cfg_drop_ratio
|
| 36 |
+
self.noise_scheduler = noise_schedulers.DDIMScheduler.from_pretrained(
|
| 37 |
+
self.noise_scheduler_name, subfolder="scheduler"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def compute_snr(self, timesteps) -> torch.Tensor:
|
| 41 |
+
"""
|
| 42 |
+
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
| 43 |
+
"""
|
| 44 |
+
alphas_cumprod = self.noise_scheduler.alphas_cumprod
|
| 45 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
| 46 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod)**0.5
|
| 47 |
+
|
| 48 |
+
# Expand the tensors.
|
| 49 |
+
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
|
| 50 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device
|
| 51 |
+
)[timesteps].float()
|
| 52 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
| 53 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
| 54 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
| 55 |
+
|
| 56 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
|
| 57 |
+
device=timesteps.device
|
| 58 |
+
)[timesteps].float()
|
| 59 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
| 60 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[...,
|
| 61 |
+
None]
|
| 62 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
| 63 |
+
|
| 64 |
+
# Compute SNR.
|
| 65 |
+
snr = (alpha / sigma)**2
|
| 66 |
+
return snr
|
| 67 |
+
|
| 68 |
+
def get_timesteps(
|
| 69 |
+
self,
|
| 70 |
+
batch_size: int,
|
| 71 |
+
device: torch.device,
|
| 72 |
+
training: bool = True
|
| 73 |
+
) -> torch.Tensor:
|
| 74 |
+
if training:
|
| 75 |
+
timesteps = torch.randint(
|
| 76 |
+
0,
|
| 77 |
+
self.noise_scheduler.config.num_train_timesteps,
|
| 78 |
+
(batch_size, ),
|
| 79 |
+
device=device
|
| 80 |
+
)
|
| 81 |
+
else:
|
| 82 |
+
# validation on half of the total timesteps
|
| 83 |
+
timesteps = (self.noise_scheduler.config.num_train_timesteps //
|
| 84 |
+
2) * torch.ones((batch_size, ),
|
| 85 |
+
dtype=torch.int64,
|
| 86 |
+
device=device)
|
| 87 |
+
|
| 88 |
+
timesteps = timesteps.long()
|
| 89 |
+
return timesteps
|
| 90 |
+
|
| 91 |
+
def get_target(
|
| 92 |
+
self, latent: torch.Tensor, noise: torch.Tensor,
|
| 93 |
+
timesteps: torch.Tensor
|
| 94 |
+
) -> torch.Tensor:
|
| 95 |
+
"""
|
| 96 |
+
Get the target for loss depending on the prediction type
|
| 97 |
+
"""
|
| 98 |
+
if self.noise_scheduler.config.prediction_type == "epsilon":
|
| 99 |
+
target = noise
|
| 100 |
+
elif self.noise_scheduler.config.prediction_type == "v_prediction":
|
| 101 |
+
target = self.noise_scheduler.get_velocity(
|
| 102 |
+
latent, noise, timesteps
|
| 103 |
+
)
|
| 104 |
+
else:
|
| 105 |
+
raise ValueError(
|
| 106 |
+
f"Unknown prediction type {self.noise_scheduler.config.prediction_type}"
|
| 107 |
+
)
|
| 108 |
+
return target
|
| 109 |
+
|
| 110 |
+
def loss_with_snr(
|
| 111 |
+
self, pred: torch.Tensor, target: torch.Tensor,
|
| 112 |
+
timesteps: torch.Tensor, mask: torch.Tensor
|
| 113 |
+
) -> torch.Tensor:
|
| 114 |
+
if self.snr_gamma is None:
|
| 115 |
+
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
|
| 116 |
+
loss = loss_with_mask(loss, mask)
|
| 117 |
+
else:
|
| 118 |
+
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
|
| 119 |
+
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
|
| 120 |
+
snr = self.compute_snr(timesteps)
|
| 121 |
+
mse_loss_weights = (
|
| 122 |
+
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)],
|
| 123 |
+
dim=1).min(dim=1)[0] / snr
|
| 124 |
+
)
|
| 125 |
+
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
|
| 126 |
+
loss = loss_with_mask(loss, mask, reduce=False) * mse_loss_weights
|
| 127 |
+
loss = loss.mean()
|
| 128 |
+
return loss
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class AudioDiffusion(
|
| 132 |
+
LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
|
| 133 |
+
DiffusionMixin
|
| 134 |
+
):
|
| 135 |
+
"""
|
| 136 |
+
Args:
|
| 137 |
+
autoencoder (AutoEncoderBase): Pretrained autoencoder module VAE(frozen).
|
| 138 |
+
content_encoder (ContentEncoder): Encodes TCC and TDC information.
|
| 139 |
+
backbone (nn.Module): Main denoising network.
|
| 140 |
+
frame_resolution (float): Resolution for audio frames.
|
| 141 |
+
noise_scheduler_name (str): Noise scheduler identifier.
|
| 142 |
+
snr_gamma (float, optional): SNR gamma for noise scheduler.
|
| 143 |
+
classifier_free_guidance (bool): Enable classifier-free guidance.
|
| 144 |
+
cfg_drop_ratio (float): Ratio for randomly dropping context for classifier-free guidance.
|
| 145 |
+
"""
|
| 146 |
+
def __init__(
|
| 147 |
+
self,
|
| 148 |
+
autoencoder: AutoEncoderBase,
|
| 149 |
+
content_encoder: ContentEncoder,
|
| 150 |
+
backbone: nn.Module,
|
| 151 |
+
frame_resolution:float,
|
| 152 |
+
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
|
| 153 |
+
snr_gamma: float = None,
|
| 154 |
+
classifier_free_guidance: bool = True,
|
| 155 |
+
cfg_drop_ratio: float = 0.2,
|
| 156 |
+
):
|
| 157 |
+
nn.Module.__init__(self)
|
| 158 |
+
DiffusionMixin.__init__(
|
| 159 |
+
self, noise_scheduler_name, snr_gamma, classifier_free_guidance, cfg_drop_ratio
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
self.autoencoder = autoencoder
|
| 163 |
+
# Freeze autoencoder parameters
|
| 164 |
+
for param in self.autoencoder.parameters():
|
| 165 |
+
param.requires_grad = False
|
| 166 |
+
|
| 167 |
+
self.content_encoder = content_encoder
|
| 168 |
+
self.backbone = backbone
|
| 169 |
+
self.frame_resolution = frame_resolution
|
| 170 |
+
self.dummy_param = nn.Parameter(torch.empty(0))
|
| 171 |
+
|
| 172 |
+
def forward(
|
| 173 |
+
self, content: list[Any], condition: list[Any], task: list[str],
|
| 174 |
+
waveform: torch.Tensor, waveform_lengths: torch.Tensor, **kwargs
|
| 175 |
+
):
|
| 176 |
+
"""
|
| 177 |
+
Training forward pass.
|
| 178 |
+
|
| 179 |
+
Args:
|
| 180 |
+
content (list[Any]): List of content dicts for each sample.
|
| 181 |
+
condition (list[Any]): Conditioning information (unused here).
|
| 182 |
+
task (list[str]): List of task types.
|
| 183 |
+
waveform (Tensor): Batch of waveform tensors.
|
| 184 |
+
waveform_lengths (Tensor): Lengths for each waveform sample.
|
| 185 |
+
|
| 186 |
+
Returns:
|
| 187 |
+
dict: Dictionary containing the diffusion loss.
|
| 188 |
+
"""
|
| 189 |
+
device = self.dummy_param.device
|
| 190 |
+
num_train_timesteps = self.noise_scheduler.config.num_train_timesteps
|
| 191 |
+
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
|
| 192 |
+
|
| 193 |
+
self.autoencoder.eval()
|
| 194 |
+
with torch.no_grad():
|
| 195 |
+
latent, latent_mask = self.autoencoder.encode(
|
| 196 |
+
waveform.unsqueeze(1), waveform_lengths
|
| 197 |
+
)
|
| 198 |
+
# content(non_time_aligned_content) for TCC and time_aligned_content for TDC
|
| 199 |
+
content, content_mask, onset, _= self.content_encoder.encode_content(
|
| 200 |
+
content, device=device
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
# prepare latent and diffusion-related noise
|
| 204 |
+
time_aligned_content = onset.permute(0,2,1)
|
| 205 |
+
if self.training and self.classifier_free_guidance:
|
| 206 |
+
mask_indices = [
|
| 207 |
+
k for k in range(len(waveform)) if random.random() < self.cfg_drop_ratio
|
| 208 |
+
]
|
| 209 |
+
if len(mask_indices) > 0:
|
| 210 |
+
content[mask_indices] = 0
|
| 211 |
+
time_aligned_content[mask_indices] = 0
|
| 212 |
+
|
| 213 |
+
batch_size = latent.shape[0]
|
| 214 |
+
timesteps = self.get_timesteps(batch_size, device, self.training)
|
| 215 |
+
noise = torch.randn_like(latent)
|
| 216 |
+
noisy_latent = self.noise_scheduler.add_noise(latent, noise, timesteps)
|
| 217 |
+
target = self.get_target(latent, noise, timesteps)
|
| 218 |
+
|
| 219 |
+
# Denoising prediction
|
| 220 |
+
pred: torch.Tensor = self.backbone(
|
| 221 |
+
x=noisy_latent,
|
| 222 |
+
timesteps=timesteps,
|
| 223 |
+
time_aligned_context=time_aligned_content,
|
| 224 |
+
context=content,
|
| 225 |
+
x_mask=latent_mask,
|
| 226 |
+
context_mask=content_mask
|
| 227 |
+
)
|
| 228 |
+
pred = pred.transpose(1, self.autoencoder.time_dim)
|
| 229 |
+
target = target.transpose(1, self.autoencoder.time_dim)
|
| 230 |
+
diff_loss = self.loss_with_snr(pred, target, timesteps, latent_mask)
|
| 231 |
+
return {
|
| 232 |
+
"diff_loss": diff_loss,
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
@torch.no_grad()
|
| 236 |
+
def inference(
|
| 237 |
+
self,
|
| 238 |
+
content: list[Any],
|
| 239 |
+
num_steps: int = 20,
|
| 240 |
+
guidance_scale: float = 3.0,
|
| 241 |
+
guidance_rescale: float = 0.0,
|
| 242 |
+
disable_progress: bool = True,
|
| 243 |
+
num_samples_per_content: int = 1,
|
| 244 |
+
**kwargs
|
| 245 |
+
):
|
| 246 |
+
"""
|
| 247 |
+
Inference/generation method for audio diffusion.
|
| 248 |
+
|
| 249 |
+
Args:
|
| 250 |
+
content (list[Any]): List of content dicts.
|
| 251 |
+
scheduler (SchedulerMixin): Scheduler for timesteps and noise.
|
| 252 |
+
num_steps (int): Number of denoising steps.
|
| 253 |
+
guidance_scale (float): Classifier-free guidance scale.
|
| 254 |
+
guidance_rescale (float): Rescale factor for guidance.
|
| 255 |
+
disable_progress (bool): Disable progress bar.
|
| 256 |
+
num_samples_per_content (int): How many samples to generate per content.
|
| 257 |
+
|
| 258 |
+
Returns:
|
| 259 |
+
waveform (Tensor): Generated waveform.
|
| 260 |
+
"""
|
| 261 |
+
device = self.dummy_param.device
|
| 262 |
+
classifier_free_guidance = guidance_scale > 1.0
|
| 263 |
+
batch_size = len(content) * num_samples_per_content
|
| 264 |
+
print(content)
|
| 265 |
+
if classifier_free_guidance:
|
| 266 |
+
content, content_mask, onset, length_list = self.encode_content_classifier_free(
|
| 267 |
+
content, num_samples_per_content
|
| 268 |
+
)
|
| 269 |
+
else:
|
| 270 |
+
content, content_mask, onset, length_list = self.content_encoder.encode_content(
|
| 271 |
+
content, device=device
|
| 272 |
+
)
|
| 273 |
+
content = content.repeat_interleave(num_samples_per_content, 0)
|
| 274 |
+
content_mask = content_mask.repeat_interleave(
|
| 275 |
+
num_samples_per_content, 0
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
self.noise_scheduler.set_timesteps(num_steps, device=device)
|
| 279 |
+
timesteps = self.noise_scheduler.timesteps
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
# prepare input latent and context for the backbone
|
| 283 |
+
shape = (batch_size, 128, onset.shape[2]) # 128 for StableVAE channels
|
| 284 |
+
time_aligned_content = onset.permute(0,2,1)
|
| 285 |
+
latent = randn_tensor(
|
| 286 |
+
shape, generator=None, device=device, dtype=content.dtype
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 290 |
+
latent = latent * self.noise_scheduler.init_noise_sigma
|
| 291 |
+
latent_mask = torch.full((batch_size, onset.shape[2]), False, device=device)
|
| 292 |
+
|
| 293 |
+
for i, length in enumerate(length_list):
|
| 294 |
+
# Set latent mask True for valid time steps for each sample
|
| 295 |
+
latent_mask[i, :length] = True
|
| 296 |
+
num_warmup_steps = len(timesteps) - num_steps * self.noise_scheduler.order
|
| 297 |
+
progress_bar = tqdm(range(num_steps), disable=disable_progress)
|
| 298 |
+
|
| 299 |
+
if classifier_free_guidance:
|
| 300 |
+
uncond_time_aligned_content = torch.zeros_like(
|
| 301 |
+
time_aligned_content
|
| 302 |
+
)
|
| 303 |
+
time_aligned_content = torch.cat(
|
| 304 |
+
[uncond_time_aligned_content, time_aligned_content]
|
| 305 |
+
)
|
| 306 |
+
latent_mask = torch.cat(
|
| 307 |
+
[latent_mask, latent_mask.detach().clone()]
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
# iteratively denoising
|
| 311 |
+
|
| 312 |
+
for i, timestep in enumerate(timesteps):
|
| 313 |
+
|
| 314 |
+
latent_input = torch.cat(
|
| 315 |
+
[latent, latent]
|
| 316 |
+
) if classifier_free_guidance else latent
|
| 317 |
+
latent_input = self.noise_scheduler.scale_model_input(latent_input, timestep)
|
| 318 |
+
|
| 319 |
+
noise_pred = self.backbone(
|
| 320 |
+
x=latent_input,
|
| 321 |
+
x_mask=latent_mask,
|
| 322 |
+
timesteps=timestep,
|
| 323 |
+
time_aligned_context=time_aligned_content,
|
| 324 |
+
context=content,
|
| 325 |
+
context_mask=content_mask,
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
if classifier_free_guidance:
|
| 329 |
+
noise_pred_uncond, noise_pred_content = noise_pred.chunk(2)
|
| 330 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 331 |
+
noise_pred_content - noise_pred_uncond
|
| 332 |
+
)
|
| 333 |
+
if guidance_rescale != 0.0:
|
| 334 |
+
noise_pred = self.rescale_cfg(
|
| 335 |
+
noise_pred_content, noise_pred, guidance_rescale
|
| 336 |
+
)
|
| 337 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 338 |
+
latent = self.noise_scheduler.step(noise_pred, timestep, latent).prev_sample
|
| 339 |
+
|
| 340 |
+
# call the callback, if provided
|
| 341 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and
|
| 342 |
+
(i+1) % self.noise_scheduler.order == 0):
|
| 343 |
+
progress_bar.update(1)
|
| 344 |
+
#latent = latent.to(next(self.autoencoder.parameters()).device)
|
| 345 |
+
waveform = self.autoencoder.decode(latent)
|
| 346 |
+
return waveform
|
| 347 |
+
|
| 348 |
+
def encode_content_classifier_free(
|
| 349 |
+
self,
|
| 350 |
+
content: list[Any],
|
| 351 |
+
task: list[str],
|
| 352 |
+
num_samples_per_content: int = 1
|
| 353 |
+
):
|
| 354 |
+
device = self.dummy_param.device
|
| 355 |
+
|
| 356 |
+
content, content_mask, onset, length_list = self.content_encoder.encode_content(
|
| 357 |
+
content, device=device
|
| 358 |
+
)
|
| 359 |
+
content = content.repeat_interleave(num_samples_per_content, 0)
|
| 360 |
+
content_mask = content_mask.repeat_interleave(
|
| 361 |
+
num_samples_per_content, 0
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
# get unconditional embeddings for classifier free guidance
|
| 365 |
+
uncond_content = torch.zeros_like(content)
|
| 366 |
+
uncond_content_mask = content_mask.detach().clone()
|
| 367 |
+
|
| 368 |
+
uncond_content = uncond_content.repeat_interleave(
|
| 369 |
+
num_samples_per_content, 0
|
| 370 |
+
)
|
| 371 |
+
uncond_content_mask = uncond_content_mask.repeat_interleave(
|
| 372 |
+
num_samples_per_content, 0
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 376 |
+
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
|
| 377 |
+
content = torch.cat([uncond_content, content])
|
| 378 |
+
content_mask = torch.cat([uncond_content_mask, content_mask])
|
| 379 |
+
|
| 380 |
+
return content, content_mask, onset, length_list
|
| 381 |
+
|
| 382 |
+
def rescale_cfg(
|
| 383 |
+
self, pred_cond: torch.Tensor, pred_cfg: torch.Tensor,
|
| 384 |
+
guidance_rescale: float
|
| 385 |
+
):
|
| 386 |
+
"""
|
| 387 |
+
Rescale `pred_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
| 388 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
| 389 |
+
"""
|
| 390 |
+
std_cond = pred_cond.std(
|
| 391 |
+
dim=list(range(1, pred_cond.ndim)), keepdim=True
|
| 392 |
+
)
|
| 393 |
+
std_cfg = pred_cfg.std(dim=list(range(1, pred_cfg.ndim)), keepdim=True)
|
| 394 |
+
|
| 395 |
+
pred_rescaled = pred_cfg * (std_cond / std_cfg)
|
| 396 |
+
pred_cfg = guidance_rescale * pred_rescaled + (
|
| 397 |
+
1 - guidance_rescale
|
| 398 |
+
) * pred_cfg
|
models/dit/__pycache__/attention.cpython-310.pyc
ADDED
|
Binary file (7.7 kB). View file
|
|
|
models/dit/__pycache__/audio_dit.cpython-310.pyc
ADDED
|
Binary file (8.31 kB). View file
|
|
|
models/dit/__pycache__/mask_dit.cpython-310.pyc
ADDED
|
Binary file (14.6 kB). View file
|
|
|
models/dit/__pycache__/modules.cpython-310.pyc
ADDED
|
Binary file (14 kB). View file
|
|
|
models/dit/__pycache__/rotary.cpython-310.pyc
ADDED
|
Binary file (2.79 kB). View file
|
|
|
models/dit/__pycache__/span_mask.cpython-310.pyc
ADDED
|
Binary file (4.75 kB). View file
|
|
|
models/dit/attention.py
ADDED
|
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torch.utils.checkpoint
|
| 5 |
+
import einops
|
| 6 |
+
from einops import rearrange, repeat
|
| 7 |
+
from inspect import isfunction
|
| 8 |
+
from .rotary import RotaryEmbedding
|
| 9 |
+
from .modules import RMSNorm
|
| 10 |
+
|
| 11 |
+
if hasattr(nn.functional, 'scaled_dot_product_attention'):
|
| 12 |
+
ATTENTION_MODE = 'flash'
|
| 13 |
+
else:
|
| 14 |
+
ATTENTION_MODE = 'math'
|
| 15 |
+
print(f'attention mode is {ATTENTION_MODE}')
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def add_mask(sim, mask):
|
| 19 |
+
b, ndim = sim.shape[0], mask.ndim
|
| 20 |
+
if ndim == 3:
|
| 21 |
+
mask = rearrange(mask, "b n m -> b 1 n m")
|
| 22 |
+
if ndim == 2:
|
| 23 |
+
mask = repeat(mask, "n m -> b 1 n m", b=b)
|
| 24 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 25 |
+
sim = sim.masked_fill(~mask, max_neg_value)
|
| 26 |
+
return sim
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def create_mask(q_shape, k_shape, device, q_mask=None, k_mask=None):
|
| 30 |
+
def default(val, d):
|
| 31 |
+
return val if val is not None else (d() if isfunction(d) else d)
|
| 32 |
+
|
| 33 |
+
b, i, j, device = q_shape[0], q_shape[-2], k_shape[-2], device
|
| 34 |
+
#print(q_mask)
|
| 35 |
+
q_mask = default(
|
| 36 |
+
q_mask, torch.ones((b, i), device=device, dtype=torch.bool)
|
| 37 |
+
)
|
| 38 |
+
k_mask = default(
|
| 39 |
+
k_mask, torch.ones((b, j), device=device, dtype=torch.bool)
|
| 40 |
+
)
|
| 41 |
+
attn_mask = rearrange(q_mask, 'b i -> b 1 i 1'
|
| 42 |
+
) * rearrange(k_mask, 'b j -> b 1 1 j')
|
| 43 |
+
return attn_mask
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class Attention(nn.Module):
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
dim,
|
| 50 |
+
context_dim=None,
|
| 51 |
+
num_heads=8,
|
| 52 |
+
qkv_bias=False,
|
| 53 |
+
qk_scale=None,
|
| 54 |
+
qk_norm=None,
|
| 55 |
+
attn_drop=0.,
|
| 56 |
+
proj_drop=0.,
|
| 57 |
+
rope_mode='none'
|
| 58 |
+
):
|
| 59 |
+
super().__init__()
|
| 60 |
+
self.num_heads = num_heads
|
| 61 |
+
head_dim = dim // num_heads
|
| 62 |
+
self.scale = qk_scale or head_dim**-0.5
|
| 63 |
+
|
| 64 |
+
if context_dim is None:
|
| 65 |
+
self.cross_attn = False
|
| 66 |
+
else:
|
| 67 |
+
self.cross_attn = True
|
| 68 |
+
|
| 69 |
+
context_dim = dim if context_dim is None else context_dim
|
| 70 |
+
|
| 71 |
+
self.to_q = nn.Linear(dim, dim, bias=qkv_bias)
|
| 72 |
+
self.to_k = nn.Linear(context_dim, dim, bias=qkv_bias)
|
| 73 |
+
self.to_v = nn.Linear(context_dim, dim, bias=qkv_bias)
|
| 74 |
+
|
| 75 |
+
if qk_norm is None:
|
| 76 |
+
self.norm_q = nn.Identity()
|
| 77 |
+
self.norm_k = nn.Identity()
|
| 78 |
+
elif qk_norm == 'layernorm':
|
| 79 |
+
self.norm_q = nn.LayerNorm(head_dim)
|
| 80 |
+
self.norm_k = nn.LayerNorm(head_dim)
|
| 81 |
+
elif qk_norm == 'rmsnorm':
|
| 82 |
+
self.norm_q = RMSNorm(head_dim)
|
| 83 |
+
self.norm_k = RMSNorm(head_dim)
|
| 84 |
+
else:
|
| 85 |
+
raise NotImplementedError
|
| 86 |
+
|
| 87 |
+
self.attn_drop_p = attn_drop
|
| 88 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 89 |
+
self.proj = nn.Linear(dim, dim)
|
| 90 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 91 |
+
|
| 92 |
+
if self.cross_attn:
|
| 93 |
+
assert rope_mode == 'none'
|
| 94 |
+
self.rope_mode = rope_mode
|
| 95 |
+
if self.rope_mode == 'shared' or self.rope_mode == 'x_only':
|
| 96 |
+
self.rotary = RotaryEmbedding(dim=head_dim)
|
| 97 |
+
elif self.rope_mode == 'dual':
|
| 98 |
+
self.rotary_x = RotaryEmbedding(dim=head_dim)
|
| 99 |
+
self.rotary_c = RotaryEmbedding(dim=head_dim)
|
| 100 |
+
|
| 101 |
+
def _rotary(self, q, k, extras):
|
| 102 |
+
if self.rope_mode == 'shared':
|
| 103 |
+
q, k = self.rotary(q=q, k=k)
|
| 104 |
+
elif self.rope_mode == 'x_only':
|
| 105 |
+
q_x, k_x = self.rotary(
|
| 106 |
+
q=q[:, :, extras:, :], k=k[:, :, extras:, :]
|
| 107 |
+
)
|
| 108 |
+
q_c, k_c = q[:, :, :extras, :], k[:, :, :extras, :]
|
| 109 |
+
q = torch.cat((q_c, q_x), dim=2)
|
| 110 |
+
k = torch.cat((k_c, k_x), dim=2)
|
| 111 |
+
elif self.rope_mode == 'dual':
|
| 112 |
+
q_x, k_x = self.rotary_x(
|
| 113 |
+
q=q[:, :, extras:, :], k=k[:, :, extras:, :]
|
| 114 |
+
)
|
| 115 |
+
q_c, k_c = self.rotary_c(
|
| 116 |
+
q=q[:, :, :extras, :], k=k[:, :, :extras, :]
|
| 117 |
+
)
|
| 118 |
+
q = torch.cat((q_c, q_x), dim=2)
|
| 119 |
+
k = torch.cat((k_c, k_x), dim=2)
|
| 120 |
+
elif self.rope_mode == 'none':
|
| 121 |
+
pass
|
| 122 |
+
else:
|
| 123 |
+
raise NotImplementedError
|
| 124 |
+
return q, k
|
| 125 |
+
|
| 126 |
+
def _attn(self, q, k, v, mask_binary):
|
| 127 |
+
if ATTENTION_MODE == 'flash':
|
| 128 |
+
x = F.scaled_dot_product_attention(
|
| 129 |
+
q, k, v, dropout_p=self.attn_drop_p, attn_mask=mask_binary
|
| 130 |
+
)
|
| 131 |
+
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
| 132 |
+
elif ATTENTION_MODE == 'math':
|
| 133 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 134 |
+
attn = add_mask(
|
| 135 |
+
attn, mask_binary
|
| 136 |
+
) if mask_binary is not None else attn
|
| 137 |
+
attn = attn.softmax(dim=-1)
|
| 138 |
+
attn = self.attn_drop(attn)
|
| 139 |
+
x = (attn @ v).transpose(1, 2)
|
| 140 |
+
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
| 141 |
+
else:
|
| 142 |
+
raise NotImplementedError
|
| 143 |
+
return x
|
| 144 |
+
|
| 145 |
+
def forward(self, x, context=None, context_mask=None, extras=0):
|
| 146 |
+
B, L, C = x.shape
|
| 147 |
+
if context is None:
|
| 148 |
+
context = x
|
| 149 |
+
|
| 150 |
+
q = self.to_q(x)
|
| 151 |
+
k = self.to_k(context)
|
| 152 |
+
v = self.to_v(context)
|
| 153 |
+
|
| 154 |
+
if context_mask is not None:
|
| 155 |
+
mask_binary = create_mask(
|
| 156 |
+
x.shape, context.shape, x.device, None, context_mask
|
| 157 |
+
)
|
| 158 |
+
else:
|
| 159 |
+
mask_binary = None
|
| 160 |
+
|
| 161 |
+
q = einops.rearrange(q, 'B L (H D) -> B H L D', H=self.num_heads)
|
| 162 |
+
k = einops.rearrange(k, 'B L (H D) -> B H L D', H=self.num_heads)
|
| 163 |
+
v = einops.rearrange(v, 'B L (H D) -> B H L D', H=self.num_heads)
|
| 164 |
+
|
| 165 |
+
q = self.norm_q(q)
|
| 166 |
+
k = self.norm_k(k)
|
| 167 |
+
|
| 168 |
+
q, k = self._rotary(q, k, extras)
|
| 169 |
+
|
| 170 |
+
x = self._attn(q, k, v, mask_binary)
|
| 171 |
+
|
| 172 |
+
x = self.proj(x)
|
| 173 |
+
x = self.proj_drop(x)
|
| 174 |
+
return x
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class JointAttention(nn.Module):
|
| 178 |
+
def __init__(
|
| 179 |
+
self,
|
| 180 |
+
dim,
|
| 181 |
+
num_heads=8,
|
| 182 |
+
qkv_bias=False,
|
| 183 |
+
qk_scale=None,
|
| 184 |
+
qk_norm=None,
|
| 185 |
+
attn_drop=0.,
|
| 186 |
+
proj_drop=0.,
|
| 187 |
+
rope_mode='none'
|
| 188 |
+
):
|
| 189 |
+
super().__init__()
|
| 190 |
+
self.num_heads = num_heads
|
| 191 |
+
head_dim = dim // num_heads
|
| 192 |
+
self.scale = qk_scale or head_dim**-0.5
|
| 193 |
+
|
| 194 |
+
self.to_qx, self.to_kx, self.to_vx = self._make_qkv_layers(
|
| 195 |
+
dim, qkv_bias
|
| 196 |
+
)
|
| 197 |
+
self.to_qc, self.to_kc, self.to_vc = self._make_qkv_layers(
|
| 198 |
+
dim, qkv_bias
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
self.norm_qx, self.norm_kx = self._make_norm_layers(qk_norm, head_dim)
|
| 202 |
+
self.norm_qc, self.norm_kc = self._make_norm_layers(qk_norm, head_dim)
|
| 203 |
+
|
| 204 |
+
self.attn_drop_p = attn_drop
|
| 205 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 206 |
+
|
| 207 |
+
self.proj_x = nn.Linear(dim, dim)
|
| 208 |
+
self.proj_drop_x = nn.Dropout(proj_drop)
|
| 209 |
+
|
| 210 |
+
self.proj_c = nn.Linear(dim, dim)
|
| 211 |
+
self.proj_drop_c = nn.Dropout(proj_drop)
|
| 212 |
+
|
| 213 |
+
self.rope_mode = rope_mode
|
| 214 |
+
if self.rope_mode == 'shared' or self.rope_mode == 'x_only':
|
| 215 |
+
self.rotary = RotaryEmbedding(dim=head_dim)
|
| 216 |
+
elif self.rope_mode == 'dual':
|
| 217 |
+
self.rotary_x = RotaryEmbedding(dim=head_dim)
|
| 218 |
+
self.rotary_c = RotaryEmbedding(dim=head_dim)
|
| 219 |
+
|
| 220 |
+
def _make_qkv_layers(self, dim, qkv_bias):
|
| 221 |
+
return (
|
| 222 |
+
nn.Linear(dim, dim,
|
| 223 |
+
bias=qkv_bias), nn.Linear(dim, dim, bias=qkv_bias),
|
| 224 |
+
nn.Linear(dim, dim, bias=qkv_bias)
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
def _make_norm_layers(self, qk_norm, head_dim):
|
| 228 |
+
if qk_norm is None:
|
| 229 |
+
norm_q = nn.Identity()
|
| 230 |
+
norm_k = nn.Identity()
|
| 231 |
+
elif qk_norm == 'layernorm':
|
| 232 |
+
norm_q = nn.LayerNorm(head_dim)
|
| 233 |
+
norm_k = nn.LayerNorm(head_dim)
|
| 234 |
+
elif qk_norm == 'rmsnorm':
|
| 235 |
+
norm_q = RMSNorm(head_dim)
|
| 236 |
+
norm_k = RMSNorm(head_dim)
|
| 237 |
+
else:
|
| 238 |
+
raise NotImplementedError
|
| 239 |
+
return norm_q, norm_k
|
| 240 |
+
|
| 241 |
+
def _rotary(self, q, k, extras):
|
| 242 |
+
if self.rope_mode == 'shared':
|
| 243 |
+
q, k = self.rotary(q=q, k=k)
|
| 244 |
+
elif self.rope_mode == 'x_only':
|
| 245 |
+
q_x, k_x = self.rotary(
|
| 246 |
+
q=q[:, :, extras:, :], k=k[:, :, extras:, :]
|
| 247 |
+
)
|
| 248 |
+
q_c, k_c = q[:, :, :extras, :], k[:, :, :extras, :]
|
| 249 |
+
q = torch.cat((q_c, q_x), dim=2)
|
| 250 |
+
k = torch.cat((k_c, k_x), dim=2)
|
| 251 |
+
elif self.rope_mode == 'dual':
|
| 252 |
+
q_x, k_x = self.rotary_x(
|
| 253 |
+
q=q[:, :, extras:, :], k=k[:, :, extras:, :]
|
| 254 |
+
)
|
| 255 |
+
q_c, k_c = self.rotary_c(
|
| 256 |
+
q=q[:, :, :extras, :], k=k[:, :, :extras, :]
|
| 257 |
+
)
|
| 258 |
+
q = torch.cat((q_c, q_x), dim=2)
|
| 259 |
+
k = torch.cat((k_c, k_x), dim=2)
|
| 260 |
+
elif self.rope_mode == 'none':
|
| 261 |
+
pass
|
| 262 |
+
else:
|
| 263 |
+
raise NotImplementedError
|
| 264 |
+
return q, k
|
| 265 |
+
|
| 266 |
+
def _attn(self, q, k, v, mask_binary):
|
| 267 |
+
if ATTENTION_MODE == 'flash':
|
| 268 |
+
x = F.scaled_dot_product_attention(
|
| 269 |
+
q, k, v, dropout_p=self.attn_drop_p, attn_mask=mask_binary
|
| 270 |
+
)
|
| 271 |
+
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
| 272 |
+
elif ATTENTION_MODE == 'math':
|
| 273 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 274 |
+
attn = add_mask(
|
| 275 |
+
attn, mask_binary
|
| 276 |
+
) if mask_binary is not None else attn
|
| 277 |
+
attn = attn.softmax(dim=-1)
|
| 278 |
+
attn = self.attn_drop(attn)
|
| 279 |
+
x = (attn @ v).transpose(1, 2)
|
| 280 |
+
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
| 281 |
+
else:
|
| 282 |
+
raise NotImplementedError
|
| 283 |
+
return x
|
| 284 |
+
|
| 285 |
+
def _cat_mask(self, x, context, x_mask=None, context_mask=None):
|
| 286 |
+
B = x.shape[0]
|
| 287 |
+
if x_mask is None:
|
| 288 |
+
x_mask = torch.ones(B, x.shape[-2], device=x.device).bool()
|
| 289 |
+
if context_mask is None:
|
| 290 |
+
context_mask = torch.ones(
|
| 291 |
+
B, context.shape[-2], device=context.device
|
| 292 |
+
).bool()
|
| 293 |
+
mask = torch.cat([context_mask, x_mask], dim=1)
|
| 294 |
+
return mask
|
| 295 |
+
|
| 296 |
+
def forward(self, x, context, x_mask=None, context_mask=None, extras=0):
|
| 297 |
+
B, Lx, C = x.shape
|
| 298 |
+
_, Lc, _ = context.shape
|
| 299 |
+
if x_mask is not None or context_mask is not None:
|
| 300 |
+
mask = self._cat_mask(
|
| 301 |
+
x, context, x_mask=x_mask, context_mask=context_mask
|
| 302 |
+
)
|
| 303 |
+
shape = [B, Lx + Lc, C]
|
| 304 |
+
mask_binary = create_mask(
|
| 305 |
+
q_shape=shape,
|
| 306 |
+
k_shape=shape,
|
| 307 |
+
device=x.device,
|
| 308 |
+
q_mask=None,
|
| 309 |
+
k_mask=mask
|
| 310 |
+
)
|
| 311 |
+
else:
|
| 312 |
+
mask_binary = None
|
| 313 |
+
|
| 314 |
+
qx, kx, vx = self.to_qx(x), self.to_kx(x), self.to_vx(x)
|
| 315 |
+
qc, kc, vc = self.to_qc(context), self.to_kc(context
|
| 316 |
+
), self.to_vc(context)
|
| 317 |
+
|
| 318 |
+
qx, kx, vx = map(
|
| 319 |
+
lambda t: einops.
|
| 320 |
+
rearrange(t, 'B L (H D) -> B H L D', H=self.num_heads),
|
| 321 |
+
[qx, kx, vx]
|
| 322 |
+
)
|
| 323 |
+
qc, kc, vc = map(
|
| 324 |
+
lambda t: einops.
|
| 325 |
+
rearrange(t, 'B L (H D) -> B H L D', H=self.num_heads),
|
| 326 |
+
[qc, kc, vc]
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
qx, kx = self.norm_qx(qx), self.norm_kx(kx)
|
| 330 |
+
qc, kc = self.norm_qc(qc), self.norm_kc(kc)
|
| 331 |
+
|
| 332 |
+
q, k, v = (
|
| 333 |
+
torch.cat([qc, qx],
|
| 334 |
+
dim=2), torch.cat([kc, kx],
|
| 335 |
+
dim=2), torch.cat([vc, vx], dim=2)
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
q, k = self._rotary(q, k, extras)
|
| 339 |
+
|
| 340 |
+
x = self._attn(q, k, v, mask_binary)
|
| 341 |
+
|
| 342 |
+
context, x = x[:, :Lc, :], x[:, Lc:, :]
|
| 343 |
+
|
| 344 |
+
x = self.proj_x(x)
|
| 345 |
+
x = self.proj_drop_x(x)
|
| 346 |
+
|
| 347 |
+
context = self.proj_c(context)
|
| 348 |
+
context = self.proj_drop_c(context)
|
| 349 |
+
|
| 350 |
+
return x, context
|
models/dit/audio_diffsingernet_dit.py
ADDED
|
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch.utils.checkpoint import checkpoint
|
| 4 |
+
|
| 5 |
+
from .mask_dit import DiTBlock, FinalBlock, UDiT
|
| 6 |
+
from .modules import (
|
| 7 |
+
film_modulate,
|
| 8 |
+
PatchEmbed,
|
| 9 |
+
PE_wrapper,
|
| 10 |
+
TimestepEmbedder,
|
| 11 |
+
RMSNorm,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class AudioDiTBlock(DiTBlock):
|
| 16 |
+
"""
|
| 17 |
+
A modified DiT block with time_aligned_context add to latent.
|
| 18 |
+
"""
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
dim,
|
| 22 |
+
time_aligned_context_dim,
|
| 23 |
+
dilation,
|
| 24 |
+
context_dim=None,
|
| 25 |
+
num_heads=8,
|
| 26 |
+
mlp_ratio=4.,
|
| 27 |
+
qkv_bias=False,
|
| 28 |
+
qk_scale=None,
|
| 29 |
+
qk_norm=None,
|
| 30 |
+
act_layer='gelu',
|
| 31 |
+
norm_layer=nn.LayerNorm,
|
| 32 |
+
time_fusion='none',
|
| 33 |
+
ada_sola_rank=None,
|
| 34 |
+
ada_sola_alpha=None,
|
| 35 |
+
skip=False,
|
| 36 |
+
skip_norm=False,
|
| 37 |
+
rope_mode='none',
|
| 38 |
+
context_norm=False,
|
| 39 |
+
use_checkpoint=False
|
| 40 |
+
):
|
| 41 |
+
super().__init__(
|
| 42 |
+
dim=dim,
|
| 43 |
+
context_dim=context_dim,
|
| 44 |
+
num_heads=num_heads,
|
| 45 |
+
mlp_ratio=mlp_ratio,
|
| 46 |
+
qkv_bias=qkv_bias,
|
| 47 |
+
qk_scale=qk_scale,
|
| 48 |
+
qk_norm=qk_norm,
|
| 49 |
+
act_layer=act_layer,
|
| 50 |
+
norm_layer=norm_layer,
|
| 51 |
+
time_fusion=time_fusion,
|
| 52 |
+
ada_sola_rank=ada_sola_rank,
|
| 53 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 54 |
+
skip=skip,
|
| 55 |
+
skip_norm=skip_norm,
|
| 56 |
+
rope_mode=rope_mode,
|
| 57 |
+
context_norm=context_norm,
|
| 58 |
+
use_checkpoint=use_checkpoint
|
| 59 |
+
)
|
| 60 |
+
# time-aligned context projection
|
| 61 |
+
self.ta_context_projection = nn.Linear(
|
| 62 |
+
time_aligned_context_dim, 2 * dim
|
| 63 |
+
)
|
| 64 |
+
self.dilated_conv = nn.Conv1d(
|
| 65 |
+
dim, 2 * dim, kernel_size=3, padding=dilation, dilation=dilation
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
def forward(
|
| 69 |
+
self,
|
| 70 |
+
x,
|
| 71 |
+
time_aligned_context,
|
| 72 |
+
time_token=None,
|
| 73 |
+
time_ada=None,
|
| 74 |
+
skip=None,
|
| 75 |
+
context=None,
|
| 76 |
+
x_mask=None,
|
| 77 |
+
context_mask=None,
|
| 78 |
+
extras=None
|
| 79 |
+
):
|
| 80 |
+
if self.use_checkpoint:
|
| 81 |
+
return checkpoint(
|
| 82 |
+
self._forward,
|
| 83 |
+
x,
|
| 84 |
+
time_aligned_context,
|
| 85 |
+
time_token,
|
| 86 |
+
time_ada,
|
| 87 |
+
skip,
|
| 88 |
+
context,
|
| 89 |
+
x_mask,
|
| 90 |
+
context_mask,
|
| 91 |
+
extras,
|
| 92 |
+
use_reentrant=False
|
| 93 |
+
)
|
| 94 |
+
else:
|
| 95 |
+
return self._forward(
|
| 96 |
+
x,
|
| 97 |
+
time_aligned_context,
|
| 98 |
+
time_token,
|
| 99 |
+
time_ada,
|
| 100 |
+
skip,
|
| 101 |
+
context,
|
| 102 |
+
x_mask,
|
| 103 |
+
context_mask,
|
| 104 |
+
extras,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def _forward(
|
| 108 |
+
self,
|
| 109 |
+
x,
|
| 110 |
+
time_aligned_context,
|
| 111 |
+
time_token=None,
|
| 112 |
+
time_ada=None,
|
| 113 |
+
skip=None,
|
| 114 |
+
context=None,
|
| 115 |
+
x_mask=None,
|
| 116 |
+
context_mask=None,
|
| 117 |
+
extras=None
|
| 118 |
+
):
|
| 119 |
+
B, T, C = x.shape
|
| 120 |
+
if self.skip_linear is not None:
|
| 121 |
+
assert skip is not None
|
| 122 |
+
cat = torch.cat([x, skip], dim=-1)
|
| 123 |
+
cat = self.skip_norm(cat)
|
| 124 |
+
x = self.skip_linear(cat)
|
| 125 |
+
|
| 126 |
+
if self.use_adanorm:
|
| 127 |
+
time_ada = self.adaln(time_token, time_ada)
|
| 128 |
+
(shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
|
| 129 |
+
gate_mlp) = time_ada.chunk(6, dim=1)
|
| 130 |
+
|
| 131 |
+
# self attention
|
| 132 |
+
if self.use_adanorm:
|
| 133 |
+
x_norm = film_modulate(
|
| 134 |
+
self.norm1(x), shift=shift_msa, scale=scale_msa
|
| 135 |
+
)
|
| 136 |
+
x = x + (1-gate_msa) * self.attn(
|
| 137 |
+
x_norm, context=None, context_mask=x_mask, extras=extras
|
| 138 |
+
)
|
| 139 |
+
else:
|
| 140 |
+
# TODO diffusion timestep input is not fused here
|
| 141 |
+
x = x + self.attn(
|
| 142 |
+
self.norm1(x),
|
| 143 |
+
context=None,
|
| 144 |
+
context_mask=x_mask,
|
| 145 |
+
extras=extras
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# time-aligned context
|
| 149 |
+
time_aligned_context = self.ta_context_projection(time_aligned_context)
|
| 150 |
+
x = self.dilated_conv(x.transpose(1, 2)
|
| 151 |
+
).transpose(1, 2) + time_aligned_context
|
| 152 |
+
|
| 153 |
+
gate, filter = torch.chunk(x, 2, dim=-1)
|
| 154 |
+
x = torch.sigmoid(gate) * torch.tanh(filter)
|
| 155 |
+
|
| 156 |
+
# cross attention
|
| 157 |
+
if self.use_context:
|
| 158 |
+
assert context is not None
|
| 159 |
+
x = x + self.cross_attn(
|
| 160 |
+
x=self.norm2(x),
|
| 161 |
+
context=self.norm_context(context),
|
| 162 |
+
context_mask=context_mask,
|
| 163 |
+
extras=extras
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# mlp
|
| 167 |
+
if self.use_adanorm:
|
| 168 |
+
x_norm = film_modulate(
|
| 169 |
+
self.norm3(x), shift=shift_mlp, scale=scale_mlp
|
| 170 |
+
)
|
| 171 |
+
x = x + (1-gate_mlp) * self.mlp(x_norm)
|
| 172 |
+
else:
|
| 173 |
+
x = x + self.mlp(self.norm3(x))
|
| 174 |
+
|
| 175 |
+
return x
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class AudioUDiT(UDiT):
|
| 179 |
+
def __init__(
|
| 180 |
+
self,
|
| 181 |
+
img_size=224,
|
| 182 |
+
patch_size=16,
|
| 183 |
+
in_chans=3,
|
| 184 |
+
input_type='2d',
|
| 185 |
+
out_chans=None,
|
| 186 |
+
embed_dim=768,
|
| 187 |
+
depth=12,
|
| 188 |
+
dilation_cycle_length=4,
|
| 189 |
+
num_heads=12,
|
| 190 |
+
mlp_ratio=4,
|
| 191 |
+
qkv_bias=False,
|
| 192 |
+
qk_scale=None,
|
| 193 |
+
qk_norm=None,
|
| 194 |
+
act_layer='gelu',
|
| 195 |
+
norm_layer='layernorm',
|
| 196 |
+
context_norm=False,
|
| 197 |
+
use_checkpoint=False,
|
| 198 |
+
time_fusion='token',
|
| 199 |
+
ada_sola_rank=None,
|
| 200 |
+
ada_sola_alpha=None,
|
| 201 |
+
cls_dim=None,
|
| 202 |
+
time_aligned_context_dim=768,
|
| 203 |
+
context_dim=768,
|
| 204 |
+
context_fusion='concat',
|
| 205 |
+
context_max_length=128,
|
| 206 |
+
context_pe_method='sinu',
|
| 207 |
+
pe_method='abs',
|
| 208 |
+
rope_mode='none',
|
| 209 |
+
use_conv=True,
|
| 210 |
+
skip=True,
|
| 211 |
+
skip_norm=True
|
| 212 |
+
):
|
| 213 |
+
nn.Module.__init__(self)
|
| 214 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
| 215 |
+
|
| 216 |
+
# input
|
| 217 |
+
self.in_chans = in_chans
|
| 218 |
+
self.input_type = input_type
|
| 219 |
+
if self.input_type == '2d':
|
| 220 |
+
num_patches = (img_size[0] //
|
| 221 |
+
patch_size) * (img_size[1] // patch_size)
|
| 222 |
+
elif self.input_type == '1d':
|
| 223 |
+
num_patches = img_size // patch_size
|
| 224 |
+
self.patch_embed = PatchEmbed(
|
| 225 |
+
patch_size=patch_size,
|
| 226 |
+
in_chans=in_chans,
|
| 227 |
+
embed_dim=embed_dim,
|
| 228 |
+
input_type=input_type
|
| 229 |
+
)
|
| 230 |
+
out_chans = in_chans if out_chans is None else out_chans
|
| 231 |
+
self.out_chans = out_chans
|
| 232 |
+
|
| 233 |
+
# position embedding
|
| 234 |
+
self.rope = rope_mode
|
| 235 |
+
self.x_pe = PE_wrapper(
|
| 236 |
+
dim=embed_dim, method=pe_method, length=num_patches
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# time embed
|
| 240 |
+
self.time_embed = TimestepEmbedder(embed_dim)
|
| 241 |
+
self.time_fusion = time_fusion
|
| 242 |
+
self.use_adanorm = False
|
| 243 |
+
|
| 244 |
+
# cls embed
|
| 245 |
+
if cls_dim is not None:
|
| 246 |
+
self.cls_embed = nn.Sequential(
|
| 247 |
+
nn.Linear(cls_dim, embed_dim, bias=True),
|
| 248 |
+
nn.SiLU(),
|
| 249 |
+
nn.Linear(embed_dim, embed_dim, bias=True),
|
| 250 |
+
)
|
| 251 |
+
else:
|
| 252 |
+
self.cls_embed = None
|
| 253 |
+
|
| 254 |
+
# time fusion
|
| 255 |
+
if time_fusion == 'token':
|
| 256 |
+
# put token at the beginning of sequence
|
| 257 |
+
self.extras = 2 if self.cls_embed else 1
|
| 258 |
+
self.time_pe = PE_wrapper(
|
| 259 |
+
dim=embed_dim, method='abs', length=self.extras
|
| 260 |
+
)
|
| 261 |
+
elif time_fusion in ['ada', 'ada_single', 'ada_sola', 'ada_sola_bias']:
|
| 262 |
+
self.use_adanorm = True
|
| 263 |
+
# aviod repetitive silu for each adaln block
|
| 264 |
+
self.time_act = nn.SiLU()
|
| 265 |
+
self.extras = 0
|
| 266 |
+
self.time_ada_final = nn.Linear(
|
| 267 |
+
embed_dim, 2 * embed_dim, bias=True
|
| 268 |
+
)
|
| 269 |
+
if time_fusion in ['ada_single', 'ada_sola', 'ada_sola_bias']:
|
| 270 |
+
# shared adaln
|
| 271 |
+
self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True)
|
| 272 |
+
else:
|
| 273 |
+
self.time_ada = None
|
| 274 |
+
else:
|
| 275 |
+
raise NotImplementedError
|
| 276 |
+
|
| 277 |
+
# context
|
| 278 |
+
# use a simple projection
|
| 279 |
+
self.use_context = False
|
| 280 |
+
self.context_cross = False
|
| 281 |
+
self.context_max_length = context_max_length
|
| 282 |
+
self.context_fusion = 'none'
|
| 283 |
+
if context_dim is not None:
|
| 284 |
+
self.use_context = True
|
| 285 |
+
self.context_embed = nn.Sequential(
|
| 286 |
+
nn.Linear(context_dim, embed_dim, bias=True),
|
| 287 |
+
nn.SiLU(),
|
| 288 |
+
nn.Linear(embed_dim, embed_dim, bias=True),
|
| 289 |
+
)
|
| 290 |
+
self.context_fusion = context_fusion
|
| 291 |
+
if context_fusion == 'concat' or context_fusion == 'joint':
|
| 292 |
+
self.extras += context_max_length
|
| 293 |
+
self.context_pe = PE_wrapper(
|
| 294 |
+
dim=embed_dim,
|
| 295 |
+
method=context_pe_method,
|
| 296 |
+
length=context_max_length
|
| 297 |
+
)
|
| 298 |
+
# no cross attention layers
|
| 299 |
+
context_dim = None
|
| 300 |
+
elif context_fusion == 'cross':
|
| 301 |
+
self.context_pe = PE_wrapper(
|
| 302 |
+
dim=embed_dim,
|
| 303 |
+
method=context_pe_method,
|
| 304 |
+
length=context_max_length
|
| 305 |
+
)
|
| 306 |
+
self.context_cross = True
|
| 307 |
+
context_dim = embed_dim
|
| 308 |
+
else:
|
| 309 |
+
raise NotImplementedError
|
| 310 |
+
|
| 311 |
+
self.use_skip = skip
|
| 312 |
+
|
| 313 |
+
# norm layers
|
| 314 |
+
if norm_layer == 'layernorm':
|
| 315 |
+
norm_layer = nn.LayerNorm
|
| 316 |
+
elif norm_layer == 'rmsnorm':
|
| 317 |
+
norm_layer = RMSNorm
|
| 318 |
+
else:
|
| 319 |
+
raise NotImplementedError
|
| 320 |
+
|
| 321 |
+
self.in_blocks = nn.ModuleList([
|
| 322 |
+
AudioDiTBlock(
|
| 323 |
+
dim=embed_dim,
|
| 324 |
+
time_aligned_context_dim=time_aligned_context_dim,
|
| 325 |
+
dilation=2**(i % dilation_cycle_length),
|
| 326 |
+
context_dim=context_dim,
|
| 327 |
+
num_heads=num_heads,
|
| 328 |
+
mlp_ratio=mlp_ratio,
|
| 329 |
+
qkv_bias=qkv_bias,
|
| 330 |
+
qk_scale=qk_scale,
|
| 331 |
+
qk_norm=qk_norm,
|
| 332 |
+
act_layer=act_layer,
|
| 333 |
+
norm_layer=norm_layer,
|
| 334 |
+
time_fusion=time_fusion,
|
| 335 |
+
ada_sola_rank=ada_sola_rank,
|
| 336 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 337 |
+
skip=False,
|
| 338 |
+
skip_norm=False,
|
| 339 |
+
rope_mode=self.rope,
|
| 340 |
+
context_norm=context_norm,
|
| 341 |
+
use_checkpoint=use_checkpoint
|
| 342 |
+
) for i in range(depth // 2)
|
| 343 |
+
])
|
| 344 |
+
|
| 345 |
+
self.mid_block = AudioDiTBlock(
|
| 346 |
+
dim=embed_dim,
|
| 347 |
+
time_aligned_context_dim=time_aligned_context_dim,
|
| 348 |
+
dilation=1,
|
| 349 |
+
context_dim=context_dim,
|
| 350 |
+
num_heads=num_heads,
|
| 351 |
+
mlp_ratio=mlp_ratio,
|
| 352 |
+
qkv_bias=qkv_bias,
|
| 353 |
+
qk_scale=qk_scale,
|
| 354 |
+
qk_norm=qk_norm,
|
| 355 |
+
act_layer=act_layer,
|
| 356 |
+
norm_layer=norm_layer,
|
| 357 |
+
time_fusion=time_fusion,
|
| 358 |
+
ada_sola_rank=ada_sola_rank,
|
| 359 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 360 |
+
skip=False,
|
| 361 |
+
skip_norm=False,
|
| 362 |
+
rope_mode=self.rope,
|
| 363 |
+
context_norm=context_norm,
|
| 364 |
+
use_checkpoint=use_checkpoint
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
self.out_blocks = nn.ModuleList([
|
| 368 |
+
AudioDiTBlock(
|
| 369 |
+
dim=embed_dim,
|
| 370 |
+
time_aligned_context_dim=time_aligned_context_dim,
|
| 371 |
+
dilation=2**(i % dilation_cycle_length),
|
| 372 |
+
context_dim=context_dim,
|
| 373 |
+
num_heads=num_heads,
|
| 374 |
+
mlp_ratio=mlp_ratio,
|
| 375 |
+
qkv_bias=qkv_bias,
|
| 376 |
+
qk_scale=qk_scale,
|
| 377 |
+
qk_norm=qk_norm,
|
| 378 |
+
act_layer=act_layer,
|
| 379 |
+
norm_layer=norm_layer,
|
| 380 |
+
time_fusion=time_fusion,
|
| 381 |
+
ada_sola_rank=ada_sola_rank,
|
| 382 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 383 |
+
skip=skip,
|
| 384 |
+
skip_norm=skip_norm,
|
| 385 |
+
rope_mode=self.rope,
|
| 386 |
+
context_norm=context_norm,
|
| 387 |
+
use_checkpoint=use_checkpoint
|
| 388 |
+
) for i in range(depth // 2)
|
| 389 |
+
])
|
| 390 |
+
|
| 391 |
+
# FinalLayer block
|
| 392 |
+
self.use_conv = use_conv
|
| 393 |
+
self.final_block = FinalBlock(
|
| 394 |
+
embed_dim=embed_dim,
|
| 395 |
+
patch_size=patch_size,
|
| 396 |
+
img_size=img_size,
|
| 397 |
+
in_chans=out_chans,
|
| 398 |
+
input_type=input_type,
|
| 399 |
+
norm_layer=norm_layer,
|
| 400 |
+
use_conv=use_conv,
|
| 401 |
+
use_adanorm=self.use_adanorm
|
| 402 |
+
)
|
| 403 |
+
self.initialize_weights()
|
| 404 |
+
|
| 405 |
+
def forward(
|
| 406 |
+
self,
|
| 407 |
+
x,
|
| 408 |
+
timesteps,
|
| 409 |
+
time_aligned_context,
|
| 410 |
+
context,
|
| 411 |
+
x_mask=None,
|
| 412 |
+
context_mask=None,
|
| 413 |
+
cls_token=None,
|
| 414 |
+
controlnet_skips=None,
|
| 415 |
+
):
|
| 416 |
+
# make it compatible with int time step during inference
|
| 417 |
+
if timesteps.dim() == 0:
|
| 418 |
+
timesteps = timesteps.expand(x.shape[0]
|
| 419 |
+
).to(x.device, dtype=torch.long)
|
| 420 |
+
|
| 421 |
+
x = self.patch_embed(x)
|
| 422 |
+
x = self.x_pe(x)
|
| 423 |
+
|
| 424 |
+
B, L, D = x.shape
|
| 425 |
+
|
| 426 |
+
if self.use_context:
|
| 427 |
+
context_token = self.context_embed(context)
|
| 428 |
+
context_token = self.context_pe(context_token)
|
| 429 |
+
if self.context_fusion == 'concat' or self.context_fusion == 'joint':
|
| 430 |
+
x, x_mask = self._concat_x_context(
|
| 431 |
+
x=x,
|
| 432 |
+
context=context_token,
|
| 433 |
+
x_mask=x_mask,
|
| 434 |
+
context_mask=context_mask
|
| 435 |
+
)
|
| 436 |
+
context_token, context_mask = None, None
|
| 437 |
+
else:
|
| 438 |
+
context_token, context_mask = None, None
|
| 439 |
+
|
| 440 |
+
time_token = self.time_embed(timesteps)
|
| 441 |
+
if self.cls_embed:
|
| 442 |
+
cls_token = self.cls_embed(cls_token)
|
| 443 |
+
time_ada = None
|
| 444 |
+
time_ada_final = None
|
| 445 |
+
if self.use_adanorm:
|
| 446 |
+
if self.cls_embed:
|
| 447 |
+
time_token = time_token + cls_token
|
| 448 |
+
time_token = self.time_act(time_token)
|
| 449 |
+
time_ada_final = self.time_ada_final(time_token)
|
| 450 |
+
if self.time_ada is not None:
|
| 451 |
+
time_ada = self.time_ada(time_token)
|
| 452 |
+
else:
|
| 453 |
+
time_token = time_token.unsqueeze(dim=1)
|
| 454 |
+
if self.cls_embed:
|
| 455 |
+
cls_token = cls_token.unsqueeze(dim=1)
|
| 456 |
+
time_token = torch.cat([time_token, cls_token], dim=1)
|
| 457 |
+
time_token = self.time_pe(time_token)
|
| 458 |
+
x = torch.cat((time_token, x), dim=1)
|
| 459 |
+
if x_mask is not None:
|
| 460 |
+
x_mask = torch.cat([
|
| 461 |
+
torch.ones(B, time_token.shape[1],
|
| 462 |
+
device=x_mask.device).bool(), x_mask
|
| 463 |
+
],
|
| 464 |
+
dim=1)
|
| 465 |
+
time_token = None
|
| 466 |
+
|
| 467 |
+
skips = []
|
| 468 |
+
for blk in self.in_blocks:
|
| 469 |
+
x = blk(
|
| 470 |
+
x=x,
|
| 471 |
+
time_aligned_context=time_aligned_context,
|
| 472 |
+
time_token=time_token,
|
| 473 |
+
time_ada=time_ada,
|
| 474 |
+
skip=None,
|
| 475 |
+
context=context_token,
|
| 476 |
+
x_mask=x_mask,
|
| 477 |
+
context_mask=context_mask,
|
| 478 |
+
extras=self.extras
|
| 479 |
+
)
|
| 480 |
+
if self.use_skip:
|
| 481 |
+
skips.append(x)
|
| 482 |
+
|
| 483 |
+
x = self.mid_block(
|
| 484 |
+
x=x,
|
| 485 |
+
time_aligned_context=time_aligned_context,
|
| 486 |
+
time_token=time_token,
|
| 487 |
+
time_ada=time_ada,
|
| 488 |
+
skip=None,
|
| 489 |
+
context=context_token,
|
| 490 |
+
x_mask=x_mask,
|
| 491 |
+
context_mask=context_mask,
|
| 492 |
+
extras=self.extras
|
| 493 |
+
)
|
| 494 |
+
for blk in self.out_blocks:
|
| 495 |
+
if self.use_skip:
|
| 496 |
+
skip = skips.pop()
|
| 497 |
+
if controlnet_skips:
|
| 498 |
+
# add to skip like u-net controlnet
|
| 499 |
+
skip = skip + controlnet_skips.pop()
|
| 500 |
+
else:
|
| 501 |
+
skip = None
|
| 502 |
+
if controlnet_skips:
|
| 503 |
+
# directly add to x
|
| 504 |
+
x = x + controlnet_skips.pop()
|
| 505 |
+
|
| 506 |
+
x = blk(
|
| 507 |
+
x=x,
|
| 508 |
+
time_aligned_context=time_aligned_context,
|
| 509 |
+
time_token=time_token,
|
| 510 |
+
time_ada=time_ada,
|
| 511 |
+
skip=skip,
|
| 512 |
+
context=context_token,
|
| 513 |
+
x_mask=x_mask,
|
| 514 |
+
context_mask=context_mask,
|
| 515 |
+
extras=self.extras
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
x = self.final_block(x, time_ada=time_ada_final, extras=self.extras)
|
| 519 |
+
|
| 520 |
+
return x
|
models/dit/audio_dit.py
ADDED
|
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch.utils.checkpoint import checkpoint
|
| 4 |
+
|
| 5 |
+
from .mask_dit import DiTBlock, FinalBlock, UDiT
|
| 6 |
+
from .modules import (
|
| 7 |
+
film_modulate,
|
| 8 |
+
PatchEmbed,
|
| 9 |
+
PE_wrapper,
|
| 10 |
+
TimestepEmbedder,
|
| 11 |
+
RMSNorm,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class AudioDiTBlock(DiTBlock):
|
| 16 |
+
"""
|
| 17 |
+
A modified DiT block with time aligned context add to latent.
|
| 18 |
+
"""
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
dim,
|
| 22 |
+
ta_context_dim,
|
| 23 |
+
ta_context_norm=False,
|
| 24 |
+
context_dim=None,
|
| 25 |
+
num_heads=8,
|
| 26 |
+
mlp_ratio=4.,
|
| 27 |
+
qkv_bias=False,
|
| 28 |
+
qk_scale=None,
|
| 29 |
+
qk_norm=None,
|
| 30 |
+
act_layer='gelu',
|
| 31 |
+
norm_layer=nn.LayerNorm,
|
| 32 |
+
ta_context_fusion='add',
|
| 33 |
+
time_fusion='none',
|
| 34 |
+
ada_sola_rank=None,
|
| 35 |
+
ada_sola_alpha=None,
|
| 36 |
+
skip=False,
|
| 37 |
+
skip_norm=False,
|
| 38 |
+
rope_mode='none',
|
| 39 |
+
context_norm=False,
|
| 40 |
+
use_checkpoint=False
|
| 41 |
+
):
|
| 42 |
+
super().__init__(
|
| 43 |
+
dim=dim,
|
| 44 |
+
context_dim=context_dim,
|
| 45 |
+
num_heads=num_heads,
|
| 46 |
+
mlp_ratio=mlp_ratio,
|
| 47 |
+
qkv_bias=qkv_bias,
|
| 48 |
+
qk_scale=qk_scale,
|
| 49 |
+
qk_norm=qk_norm,
|
| 50 |
+
act_layer=act_layer,
|
| 51 |
+
norm_layer=norm_layer,
|
| 52 |
+
time_fusion=time_fusion,
|
| 53 |
+
ada_sola_rank=ada_sola_rank,
|
| 54 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 55 |
+
skip=skip,
|
| 56 |
+
skip_norm=skip_norm,
|
| 57 |
+
rope_mode=rope_mode,
|
| 58 |
+
context_norm=context_norm,
|
| 59 |
+
use_checkpoint=use_checkpoint
|
| 60 |
+
)
|
| 61 |
+
self.ta_context_fusion = ta_context_fusion
|
| 62 |
+
self.ta_context_norm = ta_context_norm
|
| 63 |
+
if self.ta_context_fusion == "add":
|
| 64 |
+
self.ta_context_projection = nn.Linear(ta_context_dim, dim)
|
| 65 |
+
self.ta_context_norm = norm_layer(
|
| 66 |
+
ta_context_dim
|
| 67 |
+
) if self.ta_context_norm else nn.Identity()
|
| 68 |
+
elif self.ta_context_fusion == "concat":
|
| 69 |
+
self.ta_context_projection = nn.Linear(ta_context_dim + dim, dim)
|
| 70 |
+
self.ta_context_norm = norm_layer(
|
| 71 |
+
ta_context_dim + dim
|
| 72 |
+
) if self.ta_context_norm else nn.Identity()
|
| 73 |
+
|
| 74 |
+
def forward(
|
| 75 |
+
self,
|
| 76 |
+
x,
|
| 77 |
+
time_aligned_context,
|
| 78 |
+
time_token=None,
|
| 79 |
+
time_ada=None,
|
| 80 |
+
skip=None,
|
| 81 |
+
context=None,
|
| 82 |
+
x_mask=None,
|
| 83 |
+
context_mask=None,
|
| 84 |
+
extras=None
|
| 85 |
+
):
|
| 86 |
+
if self.use_checkpoint:
|
| 87 |
+
return checkpoint(
|
| 88 |
+
self._forward,
|
| 89 |
+
x,
|
| 90 |
+
time_aligned_context,
|
| 91 |
+
time_token,
|
| 92 |
+
time_ada,
|
| 93 |
+
skip,
|
| 94 |
+
context,
|
| 95 |
+
x_mask,
|
| 96 |
+
context_mask,
|
| 97 |
+
extras,
|
| 98 |
+
use_reentrant=False
|
| 99 |
+
)
|
| 100 |
+
else:
|
| 101 |
+
return self._forward(
|
| 102 |
+
x,
|
| 103 |
+
time_aligned_context,
|
| 104 |
+
time_token,
|
| 105 |
+
time_ada,
|
| 106 |
+
skip,
|
| 107 |
+
context,
|
| 108 |
+
x_mask,
|
| 109 |
+
context_mask,
|
| 110 |
+
extras,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
def _forward(
|
| 114 |
+
self,
|
| 115 |
+
x,
|
| 116 |
+
time_aligned_context,
|
| 117 |
+
time_token=None,
|
| 118 |
+
time_ada=None,
|
| 119 |
+
skip=None,
|
| 120 |
+
context=None,
|
| 121 |
+
x_mask=None,
|
| 122 |
+
context_mask=None,
|
| 123 |
+
extras=None
|
| 124 |
+
):
|
| 125 |
+
B, T, C = x.shape
|
| 126 |
+
|
| 127 |
+
# # time aligned context
|
| 128 |
+
# if self.ta_context_fusion == "add":
|
| 129 |
+
# time_aligned_context = self.ta_context_projection(
|
| 130 |
+
# self.ta_context_norm(time_aligned_context)
|
| 131 |
+
# )
|
| 132 |
+
# x = x + time_aligned_context
|
| 133 |
+
# elif self.ta_context_fusion == "concat":
|
| 134 |
+
# cat = torch.cat([x, time_aligned_context], dim=-1)
|
| 135 |
+
# cat = self.ta_context_norm(cat)
|
| 136 |
+
# x = self.ta_context_projection(cat)
|
| 137 |
+
|
| 138 |
+
# skip connection
|
| 139 |
+
if self.skip_linear is not None:
|
| 140 |
+
assert skip is not None
|
| 141 |
+
cat = torch.cat([x, skip], dim=-1)
|
| 142 |
+
cat = self.skip_norm(cat)
|
| 143 |
+
x = self.skip_linear(cat)
|
| 144 |
+
#print('skip')
|
| 145 |
+
#print(x)
|
| 146 |
+
if self.use_adanorm:
|
| 147 |
+
time_ada = self.adaln(time_token, time_ada)
|
| 148 |
+
(shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
|
| 149 |
+
gate_mlp) = time_ada.chunk(6, dim=1)
|
| 150 |
+
|
| 151 |
+
# self attention
|
| 152 |
+
if self.use_adanorm:
|
| 153 |
+
x_norm = film_modulate(
|
| 154 |
+
self.norm1(x), shift=shift_msa, scale=scale_msa
|
| 155 |
+
)
|
| 156 |
+
x = x + (1-gate_msa) * self.attn(
|
| 157 |
+
x_norm, context=None, context_mask=x_mask, extras=extras
|
| 158 |
+
)
|
| 159 |
+
else:
|
| 160 |
+
# TODO diffusion timestep input is not fused here
|
| 161 |
+
x = x + self.attn(
|
| 162 |
+
self.norm1(x),
|
| 163 |
+
context=None,
|
| 164 |
+
context_mask=x_mask,
|
| 165 |
+
extras=extras
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# time aligned context fusion
|
| 169 |
+
if self.ta_context_fusion == "add":
|
| 170 |
+
time_aligned_context = self.ta_context_projection(
|
| 171 |
+
self.ta_context_norm(time_aligned_context)
|
| 172 |
+
)
|
| 173 |
+
x = x + time_aligned_context
|
| 174 |
+
elif self.ta_context_fusion == "concat":
|
| 175 |
+
cat = torch.cat([x, time_aligned_context], dim=-1)
|
| 176 |
+
cat = self.ta_context_norm(cat)
|
| 177 |
+
x = self.ta_context_projection(cat)
|
| 178 |
+
|
| 179 |
+
# cross attention
|
| 180 |
+
if self.use_context:
|
| 181 |
+
assert context is not None
|
| 182 |
+
x = x + self.cross_attn(
|
| 183 |
+
x=self.norm2(x),
|
| 184 |
+
context=self.norm_context(context),
|
| 185 |
+
context_mask=context_mask,
|
| 186 |
+
extras=extras
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# mlp
|
| 190 |
+
if self.use_adanorm:
|
| 191 |
+
x_norm = film_modulate(
|
| 192 |
+
self.norm3(x), shift=shift_mlp, scale=scale_mlp
|
| 193 |
+
)
|
| 194 |
+
x = x + (1-gate_mlp) * self.mlp(x_norm)
|
| 195 |
+
else:
|
| 196 |
+
x = x + self.mlp(self.norm3(x))
|
| 197 |
+
|
| 198 |
+
return x
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
class AudioUDiT(UDiT):
|
| 202 |
+
def __init__(
|
| 203 |
+
self,
|
| 204 |
+
img_size=224,
|
| 205 |
+
patch_size=16,
|
| 206 |
+
in_chans=3,
|
| 207 |
+
input_type='2d',
|
| 208 |
+
out_chans=None,
|
| 209 |
+
embed_dim=768,
|
| 210 |
+
depth=12,
|
| 211 |
+
num_heads=12,
|
| 212 |
+
mlp_ratio=4,
|
| 213 |
+
qkv_bias=False,
|
| 214 |
+
qk_scale=None,
|
| 215 |
+
qk_norm=None,
|
| 216 |
+
act_layer='gelu',
|
| 217 |
+
norm_layer='layernorm',
|
| 218 |
+
context_norm=False,
|
| 219 |
+
use_checkpoint=False,
|
| 220 |
+
time_fusion='token',
|
| 221 |
+
ada_sola_rank=None,
|
| 222 |
+
ada_sola_alpha=None,
|
| 223 |
+
cls_dim=None,
|
| 224 |
+
ta_context_dim=768,
|
| 225 |
+
ta_context_fusion='concat',
|
| 226 |
+
ta_context_norm=True,
|
| 227 |
+
context_dim=768,
|
| 228 |
+
context_fusion='concat',
|
| 229 |
+
context_max_length=128,
|
| 230 |
+
context_pe_method='sinu',
|
| 231 |
+
pe_method='abs',
|
| 232 |
+
rope_mode='none',
|
| 233 |
+
use_conv=True,
|
| 234 |
+
skip=True,
|
| 235 |
+
skip_norm=True
|
| 236 |
+
):
|
| 237 |
+
nn.Module.__init__(self)
|
| 238 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
| 239 |
+
|
| 240 |
+
# input
|
| 241 |
+
self.in_chans = in_chans
|
| 242 |
+
self.input_type = input_type
|
| 243 |
+
if self.input_type == '2d':
|
| 244 |
+
num_patches = (img_size[0] //
|
| 245 |
+
patch_size) * (img_size[1] // patch_size)
|
| 246 |
+
elif self.input_type == '1d':
|
| 247 |
+
num_patches = img_size // patch_size
|
| 248 |
+
self.patch_embed = PatchEmbed(
|
| 249 |
+
patch_size=patch_size,
|
| 250 |
+
in_chans=in_chans,
|
| 251 |
+
embed_dim=embed_dim,
|
| 252 |
+
input_type=input_type
|
| 253 |
+
)
|
| 254 |
+
out_chans = in_chans if out_chans is None else out_chans
|
| 255 |
+
self.out_chans = out_chans
|
| 256 |
+
|
| 257 |
+
# position embedding
|
| 258 |
+
self.rope = rope_mode
|
| 259 |
+
self.x_pe = PE_wrapper(
|
| 260 |
+
dim=embed_dim, method=pe_method, length=num_patches
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# time embed
|
| 264 |
+
self.time_embed = TimestepEmbedder(embed_dim)
|
| 265 |
+
self.time_fusion = time_fusion
|
| 266 |
+
self.use_adanorm = False
|
| 267 |
+
|
| 268 |
+
# cls embed
|
| 269 |
+
if cls_dim is not None:
|
| 270 |
+
self.cls_embed = nn.Sequential(
|
| 271 |
+
nn.Linear(cls_dim, embed_dim, bias=True),
|
| 272 |
+
nn.SiLU(),
|
| 273 |
+
nn.Linear(embed_dim, embed_dim, bias=True),
|
| 274 |
+
)
|
| 275 |
+
else:
|
| 276 |
+
self.cls_embed = None
|
| 277 |
+
|
| 278 |
+
# time fusion
|
| 279 |
+
if time_fusion == 'token':
|
| 280 |
+
# put token at the beginning of sequence
|
| 281 |
+
self.extras = 2 if self.cls_embed else 1
|
| 282 |
+
self.time_pe = PE_wrapper(
|
| 283 |
+
dim=embed_dim, method='abs', length=self.extras
|
| 284 |
+
)
|
| 285 |
+
elif time_fusion in ['ada', 'ada_single', 'ada_sola', 'ada_sola_bias']:
|
| 286 |
+
self.use_adanorm = True
|
| 287 |
+
# aviod repetitive silu for each adaln block
|
| 288 |
+
self.time_act = nn.SiLU()
|
| 289 |
+
self.extras = 0
|
| 290 |
+
self.time_ada_final = nn.Linear(
|
| 291 |
+
embed_dim, 2 * embed_dim, bias=True
|
| 292 |
+
)
|
| 293 |
+
if time_fusion in ['ada_single', 'ada_sola', 'ada_sola_bias']:
|
| 294 |
+
# shared adaln
|
| 295 |
+
self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True)
|
| 296 |
+
else:
|
| 297 |
+
self.time_ada = None
|
| 298 |
+
else:
|
| 299 |
+
raise NotImplementedError
|
| 300 |
+
|
| 301 |
+
# context
|
| 302 |
+
# use a simple projection
|
| 303 |
+
self.use_context = False
|
| 304 |
+
self.context_cross = False
|
| 305 |
+
self.context_max_length = context_max_length
|
| 306 |
+
self.context_fusion = 'none'
|
| 307 |
+
if context_dim is not None:
|
| 308 |
+
self.use_context = True
|
| 309 |
+
self.context_embed = nn.Sequential(
|
| 310 |
+
nn.Linear(context_dim, embed_dim, bias=True),
|
| 311 |
+
nn.SiLU(),
|
| 312 |
+
nn.Linear(embed_dim, embed_dim, bias=True),
|
| 313 |
+
)
|
| 314 |
+
self.context_fusion = context_fusion
|
| 315 |
+
if context_fusion == 'concat' or context_fusion == 'joint':
|
| 316 |
+
self.extras += context_max_length
|
| 317 |
+
self.context_pe = PE_wrapper(
|
| 318 |
+
dim=embed_dim,
|
| 319 |
+
method=context_pe_method,
|
| 320 |
+
length=context_max_length
|
| 321 |
+
)
|
| 322 |
+
# no cross attention layers
|
| 323 |
+
context_dim = None
|
| 324 |
+
elif context_fusion == 'cross':
|
| 325 |
+
self.context_pe = PE_wrapper(
|
| 326 |
+
dim=embed_dim,
|
| 327 |
+
method=context_pe_method,
|
| 328 |
+
length=context_max_length
|
| 329 |
+
)
|
| 330 |
+
self.context_cross = True
|
| 331 |
+
context_dim = embed_dim
|
| 332 |
+
else:
|
| 333 |
+
raise NotImplementedError
|
| 334 |
+
|
| 335 |
+
self.use_skip = skip
|
| 336 |
+
|
| 337 |
+
# norm layers
|
| 338 |
+
if norm_layer == 'layernorm':
|
| 339 |
+
norm_layer = nn.LayerNorm
|
| 340 |
+
elif norm_layer == 'rmsnorm':
|
| 341 |
+
norm_layer = RMSNorm
|
| 342 |
+
else:
|
| 343 |
+
raise NotImplementedError
|
| 344 |
+
|
| 345 |
+
self.in_blocks = nn.ModuleList([
|
| 346 |
+
AudioDiTBlock(
|
| 347 |
+
dim=embed_dim,
|
| 348 |
+
ta_context_dim=ta_context_dim,
|
| 349 |
+
ta_context_fusion=ta_context_fusion,
|
| 350 |
+
ta_context_norm=ta_context_norm,
|
| 351 |
+
context_dim=context_dim,
|
| 352 |
+
num_heads=num_heads,
|
| 353 |
+
mlp_ratio=mlp_ratio,
|
| 354 |
+
qkv_bias=qkv_bias,
|
| 355 |
+
qk_scale=qk_scale,
|
| 356 |
+
qk_norm=qk_norm,
|
| 357 |
+
act_layer=act_layer,
|
| 358 |
+
norm_layer=norm_layer,
|
| 359 |
+
time_fusion=time_fusion,
|
| 360 |
+
ada_sola_rank=ada_sola_rank,
|
| 361 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 362 |
+
skip=False,
|
| 363 |
+
skip_norm=False,
|
| 364 |
+
rope_mode=self.rope,
|
| 365 |
+
context_norm=context_norm,
|
| 366 |
+
use_checkpoint=use_checkpoint
|
| 367 |
+
) for i in range(depth // 2)
|
| 368 |
+
])
|
| 369 |
+
|
| 370 |
+
self.mid_block = AudioDiTBlock(
|
| 371 |
+
dim=embed_dim,
|
| 372 |
+
ta_context_dim=ta_context_dim,
|
| 373 |
+
context_dim=context_dim,
|
| 374 |
+
num_heads=num_heads,
|
| 375 |
+
mlp_ratio=mlp_ratio,
|
| 376 |
+
qkv_bias=qkv_bias,
|
| 377 |
+
qk_scale=qk_scale,
|
| 378 |
+
qk_norm=qk_norm,
|
| 379 |
+
act_layer=act_layer,
|
| 380 |
+
norm_layer=norm_layer,
|
| 381 |
+
time_fusion=time_fusion,
|
| 382 |
+
ada_sola_rank=ada_sola_rank,
|
| 383 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 384 |
+
ta_context_fusion=ta_context_fusion,
|
| 385 |
+
ta_context_norm=ta_context_norm,
|
| 386 |
+
skip=False,
|
| 387 |
+
skip_norm=False,
|
| 388 |
+
rope_mode=self.rope,
|
| 389 |
+
context_norm=context_norm,
|
| 390 |
+
use_checkpoint=use_checkpoint
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
self.out_blocks = nn.ModuleList([
|
| 394 |
+
AudioDiTBlock(
|
| 395 |
+
dim=embed_dim,
|
| 396 |
+
ta_context_dim=ta_context_dim,
|
| 397 |
+
context_dim=context_dim,
|
| 398 |
+
num_heads=num_heads,
|
| 399 |
+
mlp_ratio=mlp_ratio,
|
| 400 |
+
qkv_bias=qkv_bias,
|
| 401 |
+
qk_scale=qk_scale,
|
| 402 |
+
qk_norm=qk_norm,
|
| 403 |
+
act_layer=act_layer,
|
| 404 |
+
norm_layer=norm_layer,
|
| 405 |
+
time_fusion=time_fusion,
|
| 406 |
+
ada_sola_rank=ada_sola_rank,
|
| 407 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 408 |
+
ta_context_fusion=ta_context_fusion,
|
| 409 |
+
ta_context_norm=ta_context_norm,
|
| 410 |
+
skip=skip,
|
| 411 |
+
skip_norm=skip_norm,
|
| 412 |
+
rope_mode=self.rope,
|
| 413 |
+
context_norm=context_norm,
|
| 414 |
+
use_checkpoint=use_checkpoint
|
| 415 |
+
) for i in range(depth // 2)
|
| 416 |
+
])
|
| 417 |
+
|
| 418 |
+
# FinalLayer block
|
| 419 |
+
self.use_conv = use_conv
|
| 420 |
+
self.final_block = FinalBlock(
|
| 421 |
+
embed_dim=embed_dim,
|
| 422 |
+
patch_size=patch_size,
|
| 423 |
+
img_size=img_size,
|
| 424 |
+
in_chans=out_chans,
|
| 425 |
+
input_type=input_type,
|
| 426 |
+
norm_layer=norm_layer,
|
| 427 |
+
use_conv=use_conv,
|
| 428 |
+
use_adanorm=self.use_adanorm
|
| 429 |
+
)
|
| 430 |
+
self.initialize_weights()
|
| 431 |
+
|
| 432 |
+
def forward(
|
| 433 |
+
self,
|
| 434 |
+
x,
|
| 435 |
+
timesteps,
|
| 436 |
+
time_aligned_context,
|
| 437 |
+
context,
|
| 438 |
+
x_mask=None,
|
| 439 |
+
context_mask=None,
|
| 440 |
+
cls_token=None,
|
| 441 |
+
controlnet_skips=None,
|
| 442 |
+
):
|
| 443 |
+
# make it compatible with int time step during inference
|
| 444 |
+
if timesteps.dim() == 0:
|
| 445 |
+
timesteps = timesteps.expand(x.shape[0]
|
| 446 |
+
).to(x.device, dtype=torch.long)
|
| 447 |
+
|
| 448 |
+
x = self.patch_embed(x)
|
| 449 |
+
x = self.x_pe(x)
|
| 450 |
+
|
| 451 |
+
B, L, D = x.shape
|
| 452 |
+
|
| 453 |
+
if self.use_context:
|
| 454 |
+
context_token = self.context_embed(context)
|
| 455 |
+
context_token = self.context_pe(context_token)
|
| 456 |
+
if self.context_fusion == 'concat' or self.context_fusion == 'joint':
|
| 457 |
+
x, x_mask = self._concat_x_context(
|
| 458 |
+
x=x,
|
| 459 |
+
context=context_token,
|
| 460 |
+
x_mask=x_mask,
|
| 461 |
+
context_mask=context_mask
|
| 462 |
+
)
|
| 463 |
+
context_token, context_mask = None, None
|
| 464 |
+
else:
|
| 465 |
+
context_token, context_mask = None, None
|
| 466 |
+
|
| 467 |
+
time_token = self.time_embed(timesteps)
|
| 468 |
+
if self.cls_embed:
|
| 469 |
+
cls_token = self.cls_embed(cls_token)
|
| 470 |
+
time_ada = None
|
| 471 |
+
time_ada_final = None
|
| 472 |
+
if self.use_adanorm:
|
| 473 |
+
if self.cls_embed:
|
| 474 |
+
time_token = time_token + cls_token
|
| 475 |
+
time_token = self.time_act(time_token)
|
| 476 |
+
time_ada_final = self.time_ada_final(time_token)
|
| 477 |
+
if self.time_ada is not None:
|
| 478 |
+
time_ada = self.time_ada(time_token)
|
| 479 |
+
else:
|
| 480 |
+
time_token = time_token.unsqueeze(dim=1)
|
| 481 |
+
if self.cls_embed:
|
| 482 |
+
cls_token = cls_token.unsqueeze(dim=1)
|
| 483 |
+
time_token = torch.cat([time_token, cls_token], dim=1)
|
| 484 |
+
time_token = self.time_pe(time_token)
|
| 485 |
+
x = torch.cat((time_token, x), dim=1)
|
| 486 |
+
if x_mask is not None:
|
| 487 |
+
x_mask = torch.cat([
|
| 488 |
+
torch.ones(B, time_token.shape[1],
|
| 489 |
+
device=x_mask.device).bool(), x_mask
|
| 490 |
+
],
|
| 491 |
+
dim=1)
|
| 492 |
+
time_token = None
|
| 493 |
+
|
| 494 |
+
skips = []
|
| 495 |
+
for blk in self.in_blocks:
|
| 496 |
+
x = blk(
|
| 497 |
+
x=x,
|
| 498 |
+
time_aligned_context=time_aligned_context,
|
| 499 |
+
time_token=time_token,
|
| 500 |
+
time_ada=time_ada,
|
| 501 |
+
skip=None,
|
| 502 |
+
context=context_token,
|
| 503 |
+
x_mask=x_mask,
|
| 504 |
+
context_mask=context_mask,
|
| 505 |
+
extras=self.extras
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
if self.use_skip:
|
| 509 |
+
skips.append(x)
|
| 510 |
+
|
| 511 |
+
x = self.mid_block(
|
| 512 |
+
x=x,
|
| 513 |
+
time_aligned_context=time_aligned_context,
|
| 514 |
+
time_token=time_token,
|
| 515 |
+
time_ada=time_ada,
|
| 516 |
+
skip=None,
|
| 517 |
+
context=context_token,
|
| 518 |
+
x_mask=x_mask,
|
| 519 |
+
context_mask=context_mask,
|
| 520 |
+
extras=self.extras
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
for blk in self.out_blocks:
|
| 524 |
+
if self.use_skip:
|
| 525 |
+
skip = skips.pop()
|
| 526 |
+
if controlnet_skips:
|
| 527 |
+
# add to skip like u-net controlnet
|
| 528 |
+
skip = skip + controlnet_skips.pop()
|
| 529 |
+
else:
|
| 530 |
+
skip = None
|
| 531 |
+
if controlnet_skips:
|
| 532 |
+
# directly add to x
|
| 533 |
+
x = x + controlnet_skips.pop()
|
| 534 |
+
|
| 535 |
+
x = blk(
|
| 536 |
+
x=x,
|
| 537 |
+
time_aligned_context=time_aligned_context,
|
| 538 |
+
time_token=time_token,
|
| 539 |
+
time_ada=time_ada,
|
| 540 |
+
skip=skip,
|
| 541 |
+
context=context_token,
|
| 542 |
+
x_mask=x_mask,
|
| 543 |
+
context_mask=context_mask,
|
| 544 |
+
extras=self.extras
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
x = self.final_block(x, time_ada=time_ada_final, extras=self.extras)
|
| 548 |
+
|
| 549 |
+
return x
|
models/dit/mask_dit.py
ADDED
|
@@ -0,0 +1,823 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torch.utils.checkpoint import checkpoint
|
| 6 |
+
|
| 7 |
+
from .modules import (
|
| 8 |
+
film_modulate,
|
| 9 |
+
unpatchify,
|
| 10 |
+
PatchEmbed,
|
| 11 |
+
PE_wrapper,
|
| 12 |
+
TimestepEmbedder,
|
| 13 |
+
FeedForward,
|
| 14 |
+
RMSNorm,
|
| 15 |
+
)
|
| 16 |
+
from .span_mask import compute_mask_indices
|
| 17 |
+
from .attention import Attention
|
| 18 |
+
|
| 19 |
+
logger = logging.Logger(__file__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class AdaLN(nn.Module):
|
| 23 |
+
def __init__(self, dim, ada_mode='ada', r=None, alpha=None):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.ada_mode = ada_mode
|
| 26 |
+
self.scale_shift_table = None
|
| 27 |
+
if ada_mode == 'ada':
|
| 28 |
+
# move nn.silu outside
|
| 29 |
+
self.time_ada = nn.Linear(dim, 6 * dim, bias=True)
|
| 30 |
+
elif ada_mode == 'ada_single':
|
| 31 |
+
# adaln used in pixel-art alpha
|
| 32 |
+
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
|
| 33 |
+
elif ada_mode in ['ada_solo', 'ada_sola_bias']:
|
| 34 |
+
self.lora_a = nn.Linear(dim, r * 6, bias=False)
|
| 35 |
+
self.lora_b = nn.Linear(r * 6, dim * 6, bias=False)
|
| 36 |
+
self.scaling = alpha / r
|
| 37 |
+
if ada_mode == 'ada_sola_bias':
|
| 38 |
+
# take bias out for consistency
|
| 39 |
+
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
|
| 40 |
+
else:
|
| 41 |
+
raise NotImplementedError
|
| 42 |
+
|
| 43 |
+
def forward(self, time_token=None, time_ada=None):
|
| 44 |
+
if self.ada_mode == 'ada':
|
| 45 |
+
assert time_ada is None
|
| 46 |
+
B = time_token.shape[0]
|
| 47 |
+
time_ada = self.time_ada(time_token).reshape(B, 6, -1)
|
| 48 |
+
elif self.ada_mode == 'ada_single':
|
| 49 |
+
B = time_ada.shape[0]
|
| 50 |
+
time_ada = time_ada.reshape(B, 6, -1)
|
| 51 |
+
time_ada = self.scale_shift_table[None] + time_ada
|
| 52 |
+
elif self.ada_mode in ['ada_sola', 'ada_sola_bias']:
|
| 53 |
+
B = time_ada.shape[0]
|
| 54 |
+
time_ada_lora = self.lora_b(self.lora_a(time_token)) * self.scaling
|
| 55 |
+
time_ada = time_ada + time_ada_lora
|
| 56 |
+
time_ada = time_ada.reshape(B, 6, -1)
|
| 57 |
+
if self.scale_shift_table is not None:
|
| 58 |
+
time_ada = self.scale_shift_table[None] + time_ada
|
| 59 |
+
else:
|
| 60 |
+
raise NotImplementedError
|
| 61 |
+
return time_ada
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class DiTBlock(nn.Module):
|
| 65 |
+
"""
|
| 66 |
+
A modified PixArt block with adaptive layer norm (adaLN-single) conditioning.
|
| 67 |
+
"""
|
| 68 |
+
def __init__(
|
| 69 |
+
self,
|
| 70 |
+
dim,
|
| 71 |
+
context_dim=None,
|
| 72 |
+
num_heads=8,
|
| 73 |
+
mlp_ratio=4.,
|
| 74 |
+
qkv_bias=False,
|
| 75 |
+
qk_scale=None,
|
| 76 |
+
qk_norm=None,
|
| 77 |
+
act_layer='gelu',
|
| 78 |
+
norm_layer=nn.LayerNorm,
|
| 79 |
+
time_fusion='none',
|
| 80 |
+
ada_sola_rank=None,
|
| 81 |
+
ada_sola_alpha=None,
|
| 82 |
+
skip=False,
|
| 83 |
+
skip_norm=False,
|
| 84 |
+
rope_mode='none',
|
| 85 |
+
context_norm=False,
|
| 86 |
+
use_checkpoint=False
|
| 87 |
+
):
|
| 88 |
+
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.norm1 = norm_layer(dim)
|
| 91 |
+
self.attn = Attention(
|
| 92 |
+
dim=dim,
|
| 93 |
+
num_heads=num_heads,
|
| 94 |
+
qkv_bias=qkv_bias,
|
| 95 |
+
qk_scale=qk_scale,
|
| 96 |
+
qk_norm=qk_norm,
|
| 97 |
+
rope_mode=rope_mode
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
if context_dim is not None:
|
| 101 |
+
self.use_context = True
|
| 102 |
+
self.cross_attn = Attention(
|
| 103 |
+
dim=dim,
|
| 104 |
+
num_heads=num_heads,
|
| 105 |
+
context_dim=context_dim,
|
| 106 |
+
qkv_bias=qkv_bias,
|
| 107 |
+
qk_scale=qk_scale,
|
| 108 |
+
qk_norm=qk_norm,
|
| 109 |
+
rope_mode='none'
|
| 110 |
+
)
|
| 111 |
+
self.norm2 = norm_layer(dim)
|
| 112 |
+
if context_norm:
|
| 113 |
+
self.norm_context = norm_layer(context_dim)
|
| 114 |
+
else:
|
| 115 |
+
self.norm_context = nn.Identity()
|
| 116 |
+
else:
|
| 117 |
+
self.use_context = False
|
| 118 |
+
|
| 119 |
+
self.norm3 = norm_layer(dim)
|
| 120 |
+
self.mlp = FeedForward(
|
| 121 |
+
dim=dim, mult=mlp_ratio, activation_fn=act_layer, dropout=0
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
self.use_adanorm = True if time_fusion != 'token' else False
|
| 125 |
+
if self.use_adanorm:
|
| 126 |
+
self.adaln = AdaLN(
|
| 127 |
+
dim,
|
| 128 |
+
ada_mode=time_fusion,
|
| 129 |
+
r=ada_sola_rank,
|
| 130 |
+
alpha=ada_sola_alpha
|
| 131 |
+
)
|
| 132 |
+
if skip:
|
| 133 |
+
self.skip_norm = norm_layer(2 *
|
| 134 |
+
dim) if skip_norm else nn.Identity()
|
| 135 |
+
self.skip_linear = nn.Linear(2 * dim, dim)
|
| 136 |
+
else:
|
| 137 |
+
self.skip_linear = None
|
| 138 |
+
|
| 139 |
+
self.use_checkpoint = use_checkpoint
|
| 140 |
+
|
| 141 |
+
def forward(
|
| 142 |
+
self,
|
| 143 |
+
x,
|
| 144 |
+
time_token=None,
|
| 145 |
+
time_ada=None,
|
| 146 |
+
skip=None,
|
| 147 |
+
context=None,
|
| 148 |
+
x_mask=None,
|
| 149 |
+
context_mask=None,
|
| 150 |
+
extras=None
|
| 151 |
+
):
|
| 152 |
+
if self.use_checkpoint:
|
| 153 |
+
return checkpoint(
|
| 154 |
+
self._forward,
|
| 155 |
+
x,
|
| 156 |
+
time_token,
|
| 157 |
+
time_ada,
|
| 158 |
+
skip,
|
| 159 |
+
context,
|
| 160 |
+
x_mask,
|
| 161 |
+
context_mask,
|
| 162 |
+
extras,
|
| 163 |
+
use_reentrant=False
|
| 164 |
+
)
|
| 165 |
+
else:
|
| 166 |
+
return self._forward(
|
| 167 |
+
x, time_token, time_ada, skip, context, x_mask, context_mask,
|
| 168 |
+
extras
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
def _forward(
|
| 172 |
+
self,
|
| 173 |
+
x,
|
| 174 |
+
time_token=None,
|
| 175 |
+
time_ada=None,
|
| 176 |
+
skip=None,
|
| 177 |
+
context=None,
|
| 178 |
+
x_mask=None,
|
| 179 |
+
context_mask=None,
|
| 180 |
+
extras=None
|
| 181 |
+
):
|
| 182 |
+
B, T, C = x.shape
|
| 183 |
+
if self.skip_linear is not None:
|
| 184 |
+
assert skip is not None
|
| 185 |
+
cat = torch.cat([x, skip], dim=-1)
|
| 186 |
+
cat = self.skip_norm(cat)
|
| 187 |
+
x = self.skip_linear(cat)
|
| 188 |
+
|
| 189 |
+
if self.use_adanorm:
|
| 190 |
+
time_ada = self.adaln(time_token, time_ada)
|
| 191 |
+
(shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
|
| 192 |
+
gate_mlp) = time_ada.chunk(6, dim=1)
|
| 193 |
+
|
| 194 |
+
# self attention
|
| 195 |
+
if self.use_adanorm:
|
| 196 |
+
x_norm = film_modulate(
|
| 197 |
+
self.norm1(x), shift=shift_msa, scale=scale_msa
|
| 198 |
+
)
|
| 199 |
+
x = x + (1-gate_msa) * self.attn(
|
| 200 |
+
x_norm, context=None, context_mask=x_mask, extras=extras
|
| 201 |
+
)
|
| 202 |
+
else:
|
| 203 |
+
x = x + self.attn(
|
| 204 |
+
self.norm1(x),
|
| 205 |
+
context=None,
|
| 206 |
+
context_mask=x_mask,
|
| 207 |
+
extras=extras
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
# cross attention
|
| 211 |
+
if self.use_context:
|
| 212 |
+
assert context is not None
|
| 213 |
+
x = x + self.cross_attn(
|
| 214 |
+
x=self.norm2(x),
|
| 215 |
+
context=self.norm_context(context),
|
| 216 |
+
context_mask=context_mask,
|
| 217 |
+
extras=extras
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# mlp
|
| 221 |
+
if self.use_adanorm:
|
| 222 |
+
x_norm = film_modulate(
|
| 223 |
+
self.norm3(x), shift=shift_mlp, scale=scale_mlp
|
| 224 |
+
)
|
| 225 |
+
x = x + (1-gate_mlp) * self.mlp(x_norm)
|
| 226 |
+
else:
|
| 227 |
+
x = x + self.mlp(self.norm3(x))
|
| 228 |
+
|
| 229 |
+
return x
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class FinalBlock(nn.Module):
|
| 233 |
+
def __init__(
|
| 234 |
+
self,
|
| 235 |
+
embed_dim,
|
| 236 |
+
patch_size,
|
| 237 |
+
in_chans,
|
| 238 |
+
img_size,
|
| 239 |
+
input_type='2d',
|
| 240 |
+
norm_layer=nn.LayerNorm,
|
| 241 |
+
use_conv=True,
|
| 242 |
+
use_adanorm=True
|
| 243 |
+
):
|
| 244 |
+
super().__init__()
|
| 245 |
+
self.in_chans = in_chans
|
| 246 |
+
self.img_size = img_size
|
| 247 |
+
self.input_type = input_type
|
| 248 |
+
|
| 249 |
+
self.norm = norm_layer(embed_dim)
|
| 250 |
+
if use_adanorm:
|
| 251 |
+
self.use_adanorm = True
|
| 252 |
+
else:
|
| 253 |
+
self.use_adanorm = False
|
| 254 |
+
|
| 255 |
+
if input_type == '2d':
|
| 256 |
+
self.patch_dim = patch_size**2 * in_chans
|
| 257 |
+
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
|
| 258 |
+
if use_conv:
|
| 259 |
+
self.final_layer = nn.Conv2d(
|
| 260 |
+
self.in_chans, self.in_chans, 3, padding=1
|
| 261 |
+
)
|
| 262 |
+
else:
|
| 263 |
+
self.final_layer = nn.Identity()
|
| 264 |
+
|
| 265 |
+
elif input_type == '1d':
|
| 266 |
+
self.patch_dim = patch_size * in_chans
|
| 267 |
+
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
|
| 268 |
+
if use_conv:
|
| 269 |
+
self.final_layer = nn.Conv1d(
|
| 270 |
+
self.in_chans, self.in_chans, 3, padding=1
|
| 271 |
+
)
|
| 272 |
+
else:
|
| 273 |
+
self.final_layer = nn.Identity()
|
| 274 |
+
|
| 275 |
+
def forward(self, x, time_ada=None, extras=0):
|
| 276 |
+
B, T, C = x.shape
|
| 277 |
+
x = x[:, extras:, :]
|
| 278 |
+
# only handle generation target
|
| 279 |
+
if self.use_adanorm:
|
| 280 |
+
shift, scale = time_ada.reshape(B, 2, -1).chunk(2, dim=1)
|
| 281 |
+
x = film_modulate(self.norm(x), shift, scale)
|
| 282 |
+
else:
|
| 283 |
+
x = self.norm(x)
|
| 284 |
+
x = self.linear(x)
|
| 285 |
+
x = unpatchify(x, self.in_chans, self.input_type, self.img_size)
|
| 286 |
+
x = self.final_layer(x)
|
| 287 |
+
return x
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
class UDiT(nn.Module):
|
| 291 |
+
def __init__(
|
| 292 |
+
self,
|
| 293 |
+
img_size=224,
|
| 294 |
+
patch_size=16,
|
| 295 |
+
in_chans=3,
|
| 296 |
+
input_type='2d',
|
| 297 |
+
out_chans=None,
|
| 298 |
+
embed_dim=768,
|
| 299 |
+
depth=12,
|
| 300 |
+
num_heads=12,
|
| 301 |
+
mlp_ratio=4.,
|
| 302 |
+
qkv_bias=False,
|
| 303 |
+
qk_scale=None,
|
| 304 |
+
qk_norm=None,
|
| 305 |
+
act_layer='gelu',
|
| 306 |
+
norm_layer='layernorm',
|
| 307 |
+
context_norm=False,
|
| 308 |
+
use_checkpoint=False,
|
| 309 |
+
# time fusion ada or token
|
| 310 |
+
time_fusion='token',
|
| 311 |
+
ada_sola_rank=None,
|
| 312 |
+
ada_sola_alpha=None,
|
| 313 |
+
cls_dim=None,
|
| 314 |
+
# max length is only used for concat
|
| 315 |
+
context_dim=768,
|
| 316 |
+
context_fusion='concat',
|
| 317 |
+
context_max_length=128,
|
| 318 |
+
context_pe_method='sinu',
|
| 319 |
+
pe_method='abs',
|
| 320 |
+
rope_mode='none',
|
| 321 |
+
use_conv=True,
|
| 322 |
+
skip=True,
|
| 323 |
+
skip_norm=True
|
| 324 |
+
):
|
| 325 |
+
super().__init__()
|
| 326 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
| 327 |
+
|
| 328 |
+
# input
|
| 329 |
+
self.in_chans = in_chans
|
| 330 |
+
self.input_type = input_type
|
| 331 |
+
if self.input_type == '2d':
|
| 332 |
+
num_patches = (img_size[0] //
|
| 333 |
+
patch_size) * (img_size[1] // patch_size)
|
| 334 |
+
elif self.input_type == '1d':
|
| 335 |
+
num_patches = img_size // patch_size
|
| 336 |
+
self.patch_embed = PatchEmbed(
|
| 337 |
+
patch_size=patch_size,
|
| 338 |
+
in_chans=in_chans,
|
| 339 |
+
embed_dim=embed_dim,
|
| 340 |
+
input_type=input_type
|
| 341 |
+
)
|
| 342 |
+
out_chans = in_chans if out_chans is None else out_chans
|
| 343 |
+
self.out_chans = out_chans
|
| 344 |
+
|
| 345 |
+
# position embedding
|
| 346 |
+
self.rope = rope_mode
|
| 347 |
+
self.x_pe = PE_wrapper(
|
| 348 |
+
dim=embed_dim, method=pe_method, length=num_patches
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
logger.info(f'x position embedding: {pe_method}')
|
| 352 |
+
logger.info(f'rope mode: {self.rope}')
|
| 353 |
+
|
| 354 |
+
# time embed
|
| 355 |
+
self.time_embed = TimestepEmbedder(embed_dim)
|
| 356 |
+
self.time_fusion = time_fusion
|
| 357 |
+
self.use_adanorm = False
|
| 358 |
+
|
| 359 |
+
# cls embed
|
| 360 |
+
if cls_dim is not None:
|
| 361 |
+
self.cls_embed = nn.Sequential(
|
| 362 |
+
nn.Linear(cls_dim, embed_dim, bias=True),
|
| 363 |
+
nn.SiLU(),
|
| 364 |
+
nn.Linear(embed_dim, embed_dim, bias=True),
|
| 365 |
+
)
|
| 366 |
+
else:
|
| 367 |
+
self.cls_embed = None
|
| 368 |
+
|
| 369 |
+
# time fusion
|
| 370 |
+
if time_fusion == 'token':
|
| 371 |
+
# put token at the beginning of sequence
|
| 372 |
+
self.extras = 2 if self.cls_embed else 1
|
| 373 |
+
self.time_pe = PE_wrapper(
|
| 374 |
+
dim=embed_dim, method='abs', length=self.extras
|
| 375 |
+
)
|
| 376 |
+
elif time_fusion in ['ada', 'ada_single', 'ada_sola', 'ada_sola_bias']:
|
| 377 |
+
self.use_adanorm = True
|
| 378 |
+
# aviod repetitive silu for each adaln block
|
| 379 |
+
self.time_act = nn.SiLU()
|
| 380 |
+
self.extras = 0
|
| 381 |
+
self.time_ada_final = nn.Linear(
|
| 382 |
+
embed_dim, 2 * embed_dim, bias=True
|
| 383 |
+
)
|
| 384 |
+
if time_fusion in ['ada_single', 'ada_sola', 'ada_sola_bias']:
|
| 385 |
+
# shared adaln
|
| 386 |
+
self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True)
|
| 387 |
+
else:
|
| 388 |
+
self.time_ada = None
|
| 389 |
+
else:
|
| 390 |
+
raise NotImplementedError
|
| 391 |
+
logger.info(f'time fusion mode: {self.time_fusion}')
|
| 392 |
+
|
| 393 |
+
# context
|
| 394 |
+
# use a simple projection
|
| 395 |
+
self.use_context = False
|
| 396 |
+
self.context_cross = False
|
| 397 |
+
self.context_max_length = context_max_length
|
| 398 |
+
self.context_fusion = 'none'
|
| 399 |
+
if context_dim is not None:
|
| 400 |
+
self.use_context = True
|
| 401 |
+
self.context_embed = nn.Sequential(
|
| 402 |
+
nn.Linear(context_dim, embed_dim, bias=True),
|
| 403 |
+
nn.SiLU(),
|
| 404 |
+
nn.Linear(embed_dim, embed_dim, bias=True),
|
| 405 |
+
)
|
| 406 |
+
self.context_fusion = context_fusion
|
| 407 |
+
if context_fusion == 'concat' or context_fusion == 'joint':
|
| 408 |
+
self.extras += context_max_length
|
| 409 |
+
self.context_pe = PE_wrapper(
|
| 410 |
+
dim=embed_dim,
|
| 411 |
+
method=context_pe_method,
|
| 412 |
+
length=context_max_length
|
| 413 |
+
)
|
| 414 |
+
# no cross attention layers
|
| 415 |
+
context_dim = None
|
| 416 |
+
elif context_fusion == 'cross':
|
| 417 |
+
self.context_pe = PE_wrapper(
|
| 418 |
+
dim=embed_dim,
|
| 419 |
+
method=context_pe_method,
|
| 420 |
+
length=context_max_length
|
| 421 |
+
)
|
| 422 |
+
self.context_cross = True
|
| 423 |
+
context_dim = embed_dim
|
| 424 |
+
else:
|
| 425 |
+
raise NotImplementedError
|
| 426 |
+
logger.info(f'context fusion mode: {context_fusion}')
|
| 427 |
+
logger.info(f'context position embedding: {context_pe_method}')
|
| 428 |
+
|
| 429 |
+
self.use_skip = skip
|
| 430 |
+
|
| 431 |
+
# norm layers
|
| 432 |
+
if norm_layer == 'layernorm':
|
| 433 |
+
norm_layer = nn.LayerNorm
|
| 434 |
+
elif norm_layer == 'rmsnorm':
|
| 435 |
+
norm_layer = RMSNorm
|
| 436 |
+
else:
|
| 437 |
+
raise NotImplementedError
|
| 438 |
+
|
| 439 |
+
logger.info(f'use long skip connection: {skip}')
|
| 440 |
+
self.in_blocks = nn.ModuleList([
|
| 441 |
+
DiTBlock(
|
| 442 |
+
dim=embed_dim,
|
| 443 |
+
context_dim=context_dim,
|
| 444 |
+
num_heads=num_heads,
|
| 445 |
+
mlp_ratio=mlp_ratio,
|
| 446 |
+
qkv_bias=qkv_bias,
|
| 447 |
+
qk_scale=qk_scale,
|
| 448 |
+
qk_norm=qk_norm,
|
| 449 |
+
act_layer=act_layer,
|
| 450 |
+
norm_layer=norm_layer,
|
| 451 |
+
time_fusion=time_fusion,
|
| 452 |
+
ada_sola_rank=ada_sola_rank,
|
| 453 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 454 |
+
skip=False,
|
| 455 |
+
skip_norm=False,
|
| 456 |
+
rope_mode=self.rope,
|
| 457 |
+
context_norm=context_norm,
|
| 458 |
+
use_checkpoint=use_checkpoint
|
| 459 |
+
) for _ in range(depth // 2)
|
| 460 |
+
])
|
| 461 |
+
|
| 462 |
+
self.mid_block = DiTBlock(
|
| 463 |
+
dim=embed_dim,
|
| 464 |
+
context_dim=context_dim,
|
| 465 |
+
num_heads=num_heads,
|
| 466 |
+
mlp_ratio=mlp_ratio,
|
| 467 |
+
qkv_bias=qkv_bias,
|
| 468 |
+
qk_scale=qk_scale,
|
| 469 |
+
qk_norm=qk_norm,
|
| 470 |
+
act_layer=act_layer,
|
| 471 |
+
norm_layer=norm_layer,
|
| 472 |
+
time_fusion=time_fusion,
|
| 473 |
+
ada_sola_rank=ada_sola_rank,
|
| 474 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 475 |
+
skip=False,
|
| 476 |
+
skip_norm=False,
|
| 477 |
+
rope_mode=self.rope,
|
| 478 |
+
context_norm=context_norm,
|
| 479 |
+
use_checkpoint=use_checkpoint
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
self.out_blocks = nn.ModuleList([
|
| 483 |
+
DiTBlock(
|
| 484 |
+
dim=embed_dim,
|
| 485 |
+
context_dim=context_dim,
|
| 486 |
+
num_heads=num_heads,
|
| 487 |
+
mlp_ratio=mlp_ratio,
|
| 488 |
+
qkv_bias=qkv_bias,
|
| 489 |
+
qk_scale=qk_scale,
|
| 490 |
+
qk_norm=qk_norm,
|
| 491 |
+
act_layer=act_layer,
|
| 492 |
+
norm_layer=norm_layer,
|
| 493 |
+
time_fusion=time_fusion,
|
| 494 |
+
ada_sola_rank=ada_sola_rank,
|
| 495 |
+
ada_sola_alpha=ada_sola_alpha,
|
| 496 |
+
skip=skip,
|
| 497 |
+
skip_norm=skip_norm,
|
| 498 |
+
rope_mode=self.rope,
|
| 499 |
+
context_norm=context_norm,
|
| 500 |
+
use_checkpoint=use_checkpoint
|
| 501 |
+
) for _ in range(depth // 2)
|
| 502 |
+
])
|
| 503 |
+
|
| 504 |
+
# FinalLayer block
|
| 505 |
+
self.use_conv = use_conv
|
| 506 |
+
self.final_block = FinalBlock(
|
| 507 |
+
embed_dim=embed_dim,
|
| 508 |
+
patch_size=patch_size,
|
| 509 |
+
img_size=img_size,
|
| 510 |
+
in_chans=out_chans,
|
| 511 |
+
input_type=input_type,
|
| 512 |
+
norm_layer=norm_layer,
|
| 513 |
+
use_conv=use_conv,
|
| 514 |
+
use_adanorm=self.use_adanorm
|
| 515 |
+
)
|
| 516 |
+
self.initialize_weights()
|
| 517 |
+
|
| 518 |
+
def _init_ada(self):
|
| 519 |
+
if self.time_fusion == 'ada':
|
| 520 |
+
nn.init.constant_(self.time_ada_final.weight, 0)
|
| 521 |
+
nn.init.constant_(self.time_ada_final.bias, 0)
|
| 522 |
+
for block in self.in_blocks:
|
| 523 |
+
nn.init.constant_(block.adaln.time_ada.weight, 0)
|
| 524 |
+
nn.init.constant_(block.adaln.time_ada.bias, 0)
|
| 525 |
+
nn.init.constant_(self.mid_block.adaln.time_ada.weight, 0)
|
| 526 |
+
nn.init.constant_(self.mid_block.adaln.time_ada.bias, 0)
|
| 527 |
+
for block in self.out_blocks:
|
| 528 |
+
nn.init.constant_(block.adaln.time_ada.weight, 0)
|
| 529 |
+
nn.init.constant_(block.adaln.time_ada.bias, 0)
|
| 530 |
+
elif self.time_fusion == 'ada_single':
|
| 531 |
+
nn.init.constant_(self.time_ada.weight, 0)
|
| 532 |
+
nn.init.constant_(self.time_ada.bias, 0)
|
| 533 |
+
nn.init.constant_(self.time_ada_final.weight, 0)
|
| 534 |
+
nn.init.constant_(self.time_ada_final.bias, 0)
|
| 535 |
+
elif self.time_fusion in ['ada_sola', 'ada_sola_bias']:
|
| 536 |
+
nn.init.constant_(self.time_ada.weight, 0)
|
| 537 |
+
nn.init.constant_(self.time_ada.bias, 0)
|
| 538 |
+
nn.init.constant_(self.time_ada_final.weight, 0)
|
| 539 |
+
nn.init.constant_(self.time_ada_final.bias, 0)
|
| 540 |
+
for block in self.in_blocks:
|
| 541 |
+
nn.init.kaiming_uniform_(
|
| 542 |
+
block.adaln.lora_a.weight, a=math.sqrt(5)
|
| 543 |
+
)
|
| 544 |
+
nn.init.constant_(block.adaln.lora_b.weight, 0)
|
| 545 |
+
nn.init.kaiming_uniform_(
|
| 546 |
+
self.mid_block.adaln.lora_a.weight, a=math.sqrt(5)
|
| 547 |
+
)
|
| 548 |
+
nn.init.constant_(self.mid_block.adaln.lora_b.weight, 0)
|
| 549 |
+
for block in self.out_blocks:
|
| 550 |
+
nn.init.kaiming_uniform_(
|
| 551 |
+
block.adaln.lora_a.weight, a=math.sqrt(5)
|
| 552 |
+
)
|
| 553 |
+
nn.init.constant_(block.adaln.lora_b.weight, 0)
|
| 554 |
+
|
| 555 |
+
def initialize_weights(self):
|
| 556 |
+
# Basic init for all layers
|
| 557 |
+
def _basic_init(module):
|
| 558 |
+
if isinstance(module, nn.Linear):
|
| 559 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 560 |
+
if module.bias is not None:
|
| 561 |
+
nn.init.constant_(module.bias, 0)
|
| 562 |
+
|
| 563 |
+
self.apply(_basic_init)
|
| 564 |
+
|
| 565 |
+
# init patch Conv like Linear
|
| 566 |
+
w = self.patch_embed.proj.weight.data
|
| 567 |
+
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
| 568 |
+
nn.init.constant_(self.patch_embed.proj.bias, 0)
|
| 569 |
+
|
| 570 |
+
# Zero-out AdaLN
|
| 571 |
+
if self.use_adanorm:
|
| 572 |
+
self._init_ada()
|
| 573 |
+
|
| 574 |
+
# Zero-out Cross Attention
|
| 575 |
+
if self.context_cross:
|
| 576 |
+
for block in self.in_blocks:
|
| 577 |
+
nn.init.constant_(block.cross_attn.proj.weight, 0)
|
| 578 |
+
nn.init.constant_(block.cross_attn.proj.bias, 0)
|
| 579 |
+
nn.init.constant_(self.mid_block.cross_attn.proj.weight, 0)
|
| 580 |
+
nn.init.constant_(self.mid_block.cross_attn.proj.bias, 0)
|
| 581 |
+
for block in self.out_blocks:
|
| 582 |
+
nn.init.constant_(block.cross_attn.proj.weight, 0)
|
| 583 |
+
nn.init.constant_(block.cross_attn.proj.bias, 0)
|
| 584 |
+
|
| 585 |
+
# Zero-out cls embedding
|
| 586 |
+
if self.cls_embed:
|
| 587 |
+
if self.use_adanorm:
|
| 588 |
+
nn.init.constant_(self.cls_embed[-1].weight, 0)
|
| 589 |
+
nn.init.constant_(self.cls_embed[-1].bias, 0)
|
| 590 |
+
|
| 591 |
+
# Zero-out Output
|
| 592 |
+
# might not zero-out this when using v-prediction
|
| 593 |
+
# it could be good when using noise-prediction
|
| 594 |
+
# nn.init.constant_(self.final_block.linear.weight, 0)
|
| 595 |
+
# nn.init.constant_(self.final_block.linear.bias, 0)
|
| 596 |
+
# if self.use_conv:
|
| 597 |
+
# nn.init.constant_(self.final_block.final_layer.weight.data, 0)
|
| 598 |
+
# nn.init.constant_(self.final_block.final_layer.bias, 0)
|
| 599 |
+
|
| 600 |
+
# init out Conv
|
| 601 |
+
if self.use_conv:
|
| 602 |
+
nn.init.xavier_uniform_(self.final_block.final_layer.weight)
|
| 603 |
+
nn.init.constant_(self.final_block.final_layer.bias, 0)
|
| 604 |
+
|
| 605 |
+
def _concat_x_context(self, x, context, x_mask=None, context_mask=None):
|
| 606 |
+
assert context.shape[-2] == self.context_max_length
|
| 607 |
+
# Check if either x_mask or context_mask is provided
|
| 608 |
+
B = x.shape[0]
|
| 609 |
+
# Create default masks if they are not provided
|
| 610 |
+
if x_mask is None:
|
| 611 |
+
x_mask = torch.ones(B, x.shape[-2], device=x.device).bool()
|
| 612 |
+
if context_mask is None:
|
| 613 |
+
context_mask = torch.ones(
|
| 614 |
+
B, context.shape[-2], device=context.device
|
| 615 |
+
).bool()
|
| 616 |
+
# Concatenate the masks along the second dimension (dim=1)
|
| 617 |
+
x_mask = torch.cat([context_mask, x_mask], dim=1)
|
| 618 |
+
# Concatenate context and x along the second dimension (dim=1)
|
| 619 |
+
x = torch.cat((context, x), dim=1)
|
| 620 |
+
return x, x_mask
|
| 621 |
+
|
| 622 |
+
def forward(
|
| 623 |
+
self,
|
| 624 |
+
x,
|
| 625 |
+
timesteps,
|
| 626 |
+
context,
|
| 627 |
+
x_mask=None,
|
| 628 |
+
context_mask=None,
|
| 629 |
+
cls_token=None,
|
| 630 |
+
controlnet_skips=None,
|
| 631 |
+
):
|
| 632 |
+
# make it compatible with int time step during inference
|
| 633 |
+
if timesteps.dim() == 0:
|
| 634 |
+
timesteps = timesteps.expand(x.shape[0]
|
| 635 |
+
).to(x.device, dtype=torch.long)
|
| 636 |
+
|
| 637 |
+
x = self.patch_embed(x)
|
| 638 |
+
x = self.x_pe(x)
|
| 639 |
+
|
| 640 |
+
B, L, D = x.shape
|
| 641 |
+
|
| 642 |
+
if self.use_context:
|
| 643 |
+
context_token = self.context_embed(context)
|
| 644 |
+
context_token = self.context_pe(context_token)
|
| 645 |
+
if self.context_fusion == 'concat' or self.context_fusion == 'joint':
|
| 646 |
+
x, x_mask = self._concat_x_context(
|
| 647 |
+
x=x,
|
| 648 |
+
context=context_token,
|
| 649 |
+
x_mask=x_mask,
|
| 650 |
+
context_mask=context_mask
|
| 651 |
+
)
|
| 652 |
+
context_token, context_mask = None, None
|
| 653 |
+
else:
|
| 654 |
+
context_token, context_mask = None, None
|
| 655 |
+
|
| 656 |
+
time_token = self.time_embed(timesteps)
|
| 657 |
+
if self.cls_embed:
|
| 658 |
+
cls_token = self.cls_embed(cls_token)
|
| 659 |
+
time_ada = None
|
| 660 |
+
time_ada_final = None
|
| 661 |
+
if self.use_adanorm:
|
| 662 |
+
if self.cls_embed:
|
| 663 |
+
time_token = time_token + cls_token
|
| 664 |
+
time_token = self.time_act(time_token)
|
| 665 |
+
time_ada_final = self.time_ada_final(time_token)
|
| 666 |
+
if self.time_ada is not None:
|
| 667 |
+
time_ada = self.time_ada(time_token)
|
| 668 |
+
else:
|
| 669 |
+
time_token = time_token.unsqueeze(dim=1)
|
| 670 |
+
if self.cls_embed:
|
| 671 |
+
cls_token = cls_token.unsqueeze(dim=1)
|
| 672 |
+
time_token = torch.cat([time_token, cls_token], dim=1)
|
| 673 |
+
time_token = self.time_pe(time_token)
|
| 674 |
+
x = torch.cat((time_token, x), dim=1)
|
| 675 |
+
if x_mask is not None:
|
| 676 |
+
x_mask = torch.cat([
|
| 677 |
+
torch.ones(B, time_token.shape[1],
|
| 678 |
+
device=x_mask.device).bool(), x_mask
|
| 679 |
+
],
|
| 680 |
+
dim=1)
|
| 681 |
+
time_token = None
|
| 682 |
+
|
| 683 |
+
skips = []
|
| 684 |
+
for blk in self.in_blocks:
|
| 685 |
+
x = blk(
|
| 686 |
+
x=x,
|
| 687 |
+
time_token=time_token,
|
| 688 |
+
time_ada=time_ada,
|
| 689 |
+
skip=None,
|
| 690 |
+
context=context_token,
|
| 691 |
+
x_mask=x_mask,
|
| 692 |
+
context_mask=context_mask,
|
| 693 |
+
extras=self.extras
|
| 694 |
+
)
|
| 695 |
+
if self.use_skip:
|
| 696 |
+
skips.append(x)
|
| 697 |
+
|
| 698 |
+
x = self.mid_block(
|
| 699 |
+
x=x,
|
| 700 |
+
time_token=time_token,
|
| 701 |
+
time_ada=time_ada,
|
| 702 |
+
skip=None,
|
| 703 |
+
context=context_token,
|
| 704 |
+
x_mask=x_mask,
|
| 705 |
+
context_mask=context_mask,
|
| 706 |
+
extras=self.extras
|
| 707 |
+
)
|
| 708 |
+
for blk in self.out_blocks:
|
| 709 |
+
if self.use_skip:
|
| 710 |
+
skip = skips.pop()
|
| 711 |
+
if controlnet_skips:
|
| 712 |
+
# add to skip like u-net controlnet
|
| 713 |
+
skip = skip + controlnet_skips.pop()
|
| 714 |
+
else:
|
| 715 |
+
skip = None
|
| 716 |
+
if controlnet_skips:
|
| 717 |
+
# directly add to x
|
| 718 |
+
x = x + controlnet_skips.pop()
|
| 719 |
+
|
| 720 |
+
x = blk(
|
| 721 |
+
x=x,
|
| 722 |
+
time_token=time_token,
|
| 723 |
+
time_ada=time_ada,
|
| 724 |
+
skip=skip,
|
| 725 |
+
context=context_token,
|
| 726 |
+
x_mask=x_mask,
|
| 727 |
+
context_mask=context_mask,
|
| 728 |
+
extras=self.extras
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
x = self.final_block(x, time_ada=time_ada_final, extras=self.extras)
|
| 732 |
+
|
| 733 |
+
return x
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
class MaskDiT(nn.Module):
|
| 737 |
+
def __init__(
|
| 738 |
+
self,
|
| 739 |
+
model: UDiT,
|
| 740 |
+
mae=False,
|
| 741 |
+
mae_prob=0.5,
|
| 742 |
+
mask_ratio=[0.25, 1.0],
|
| 743 |
+
mask_span=10,
|
| 744 |
+
):
|
| 745 |
+
super().__init__()
|
| 746 |
+
self.model = model
|
| 747 |
+
self.mae = mae
|
| 748 |
+
if self.mae:
|
| 749 |
+
out_channel = model.out_chans
|
| 750 |
+
self.mask_embed = nn.Parameter(torch.zeros((out_channel)))
|
| 751 |
+
self.mae_prob = mae_prob
|
| 752 |
+
self.mask_ratio = mask_ratio
|
| 753 |
+
self.mask_span = mask_span
|
| 754 |
+
|
| 755 |
+
def random_masking(self, gt, mask_ratios, mae_mask_infer=None):
|
| 756 |
+
B, D, L = gt.shape
|
| 757 |
+
if mae_mask_infer is None:
|
| 758 |
+
# mask = torch.rand(B, L).to(gt.device) < mask_ratios.unsqueeze(1)
|
| 759 |
+
mask_ratios = mask_ratios.cpu().numpy()
|
| 760 |
+
mask = compute_mask_indices(
|
| 761 |
+
shape=[B, L],
|
| 762 |
+
padding_mask=None,
|
| 763 |
+
mask_prob=mask_ratios,
|
| 764 |
+
mask_length=self.mask_span,
|
| 765 |
+
mask_type="static",
|
| 766 |
+
mask_other=0.0,
|
| 767 |
+
min_masks=1,
|
| 768 |
+
no_overlap=False,
|
| 769 |
+
min_space=0,
|
| 770 |
+
)
|
| 771 |
+
mask = mask.unsqueeze(1).expand_as(gt)
|
| 772 |
+
else:
|
| 773 |
+
mask = mae_mask_infer
|
| 774 |
+
mask = mask.expand_as(gt)
|
| 775 |
+
gt[mask] = self.mask_embed.view(1, D, 1).expand_as(gt)[mask]
|
| 776 |
+
return gt, mask.type_as(gt)
|
| 777 |
+
|
| 778 |
+
def forward(
|
| 779 |
+
self,
|
| 780 |
+
x,
|
| 781 |
+
timesteps,
|
| 782 |
+
context,
|
| 783 |
+
x_mask=None,
|
| 784 |
+
context_mask=None,
|
| 785 |
+
cls_token=None,
|
| 786 |
+
gt=None,
|
| 787 |
+
mae_mask_infer=None,
|
| 788 |
+
forward_model=True
|
| 789 |
+
):
|
| 790 |
+
# todo: handle controlnet inside
|
| 791 |
+
mae_mask = torch.ones_like(x)
|
| 792 |
+
if self.mae:
|
| 793 |
+
if gt is not None:
|
| 794 |
+
B, D, L = gt.shape
|
| 795 |
+
mask_ratios = torch.FloatTensor(B).uniform_(*self.mask_ratio
|
| 796 |
+
).to(gt.device)
|
| 797 |
+
gt, mae_mask = self.random_masking(
|
| 798 |
+
gt, mask_ratios, mae_mask_infer
|
| 799 |
+
)
|
| 800 |
+
# apply mae only to the selected batches
|
| 801 |
+
if mae_mask_infer is None:
|
| 802 |
+
# determine mae batch
|
| 803 |
+
mae_batch = torch.rand(B) < self.mae_prob
|
| 804 |
+
gt[~mae_batch] = self.mask_embed.view(
|
| 805 |
+
1, D, 1
|
| 806 |
+
).expand_as(gt)[~mae_batch]
|
| 807 |
+
mae_mask[~mae_batch] = 1.0
|
| 808 |
+
else:
|
| 809 |
+
B, D, L = x.shape
|
| 810 |
+
gt = self.mask_embed.view(1, D, 1).expand_as(x)
|
| 811 |
+
x = torch.cat([x, gt, mae_mask[:, 0:1, :]], dim=1)
|
| 812 |
+
|
| 813 |
+
if forward_model:
|
| 814 |
+
x = self.model(
|
| 815 |
+
x=x,
|
| 816 |
+
timesteps=timesteps,
|
| 817 |
+
context=context,
|
| 818 |
+
x_mask=x_mask,
|
| 819 |
+
context_mask=context_mask,
|
| 820 |
+
cls_token=cls_token
|
| 821 |
+
)
|
| 822 |
+
# logger.info(mae_mask[:, 0, :].sum(dim=-1))
|
| 823 |
+
return x, mae_mask
|
models/dit/modules.py
ADDED
|
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torch.utils.checkpoint
|
| 6 |
+
from torch.cuda.amp import autocast
|
| 7 |
+
import math
|
| 8 |
+
import einops
|
| 9 |
+
from einops import rearrange, repeat
|
| 10 |
+
from inspect import isfunction
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def trunc_normal_(tensor, mean, std, a, b):
|
| 14 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 15 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 16 |
+
def norm_cdf(x):
|
| 17 |
+
# Computes standard normal cumulative distribution function
|
| 18 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 19 |
+
|
| 20 |
+
if (mean < a - 2*std) or (mean > b + 2*std):
|
| 21 |
+
warnings.warn(
|
| 22 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 23 |
+
"The distribution of values may be incorrect.",
|
| 24 |
+
stacklevel=2
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
# Values are generated by using a truncated uniform distribution and
|
| 29 |
+
# then using the inverse CDF for the normal distribution.
|
| 30 |
+
# Get upper and lower cdf values
|
| 31 |
+
l = norm_cdf((a-mean) / std)
|
| 32 |
+
u = norm_cdf((b-mean) / std)
|
| 33 |
+
|
| 34 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 35 |
+
# [2l-1, 2u-1].
|
| 36 |
+
tensor.uniform_(2*l - 1, 2*u - 1)
|
| 37 |
+
|
| 38 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 39 |
+
# standard normal
|
| 40 |
+
tensor.erfinv_()
|
| 41 |
+
|
| 42 |
+
# Transform to proper mean, std
|
| 43 |
+
tensor.mul_(std * math.sqrt(2.))
|
| 44 |
+
tensor.add_(mean)
|
| 45 |
+
|
| 46 |
+
# Clamp to ensure it's in the proper range
|
| 47 |
+
tensor.clamp_(min=a, max=b)
|
| 48 |
+
return tensor
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# disable in checkpoint mode
|
| 52 |
+
# @torch.jit.script
|
| 53 |
+
def film_modulate(x, shift, scale):
|
| 54 |
+
return x * (1+scale) + shift
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
| 58 |
+
"""
|
| 59 |
+
Create sinusoidal timestep embeddings.
|
| 60 |
+
|
| 61 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 62 |
+
These may be fractional.
|
| 63 |
+
:param dim: the dimension of the output.
|
| 64 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 65 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
| 66 |
+
"""
|
| 67 |
+
half = dim // 2
|
| 68 |
+
freqs = torch.exp(
|
| 69 |
+
-math.log(max_period) *
|
| 70 |
+
torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 71 |
+
).to(device=timesteps.device)
|
| 72 |
+
args = timesteps[:, None].float() * freqs[None]
|
| 73 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 74 |
+
if dim % 2:
|
| 75 |
+
embedding = torch.cat([embedding,
|
| 76 |
+
torch.zeros_like(embedding[:, :1])],
|
| 77 |
+
dim=-1)
|
| 78 |
+
return embedding
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class TimestepEmbedder(nn.Module):
|
| 82 |
+
"""
|
| 83 |
+
Embeds scalar timesteps into vector representations.
|
| 84 |
+
"""
|
| 85 |
+
def __init__(
|
| 86 |
+
self, hidden_size, frequency_embedding_size=256, out_size=None
|
| 87 |
+
):
|
| 88 |
+
super().__init__()
|
| 89 |
+
if out_size is None:
|
| 90 |
+
out_size = hidden_size
|
| 91 |
+
self.mlp = nn.Sequential(
|
| 92 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 93 |
+
nn.SiLU(),
|
| 94 |
+
nn.Linear(hidden_size, out_size, bias=True),
|
| 95 |
+
)
|
| 96 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 97 |
+
|
| 98 |
+
def forward(self, t):
|
| 99 |
+
t_freq = timestep_embedding(t, self.frequency_embedding_size).type(
|
| 100 |
+
self.mlp[0].weight.dtype
|
| 101 |
+
)
|
| 102 |
+
t_emb = self.mlp(t_freq)
|
| 103 |
+
return t_emb
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def patchify(imgs, patch_size, input_type='2d'):
|
| 107 |
+
if input_type == '2d':
|
| 108 |
+
x = einops.rearrange(
|
| 109 |
+
imgs,
|
| 110 |
+
'B C (h p1) (w p2) -> B (h w) (p1 p2 C)',
|
| 111 |
+
p1=patch_size,
|
| 112 |
+
p2=patch_size
|
| 113 |
+
)
|
| 114 |
+
elif input_type == '1d':
|
| 115 |
+
x = einops.rearrange(imgs, 'B C (h p1) -> B h (p1 C)', p1=patch_size)
|
| 116 |
+
return x
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def unpatchify(x, channels=3, input_type='2d', img_size=None):
|
| 120 |
+
if input_type == '2d':
|
| 121 |
+
patch_size = int((x.shape[2] // channels)**0.5)
|
| 122 |
+
# h = w = int(x.shape[1] ** .5)
|
| 123 |
+
h, w = img_size[0] // patch_size, img_size[1] // patch_size
|
| 124 |
+
assert h * w == x.shape[1] and patch_size**2 * channels == x.shape[2]
|
| 125 |
+
x = einops.rearrange(
|
| 126 |
+
x,
|
| 127 |
+
'B (h w) (p1 p2 C) -> B C (h p1) (w p2)',
|
| 128 |
+
h=h,
|
| 129 |
+
p1=patch_size,
|
| 130 |
+
p2=patch_size
|
| 131 |
+
)
|
| 132 |
+
elif input_type == '1d':
|
| 133 |
+
patch_size = int((x.shape[2] // channels))
|
| 134 |
+
h = x.shape[1]
|
| 135 |
+
assert patch_size * channels == x.shape[2]
|
| 136 |
+
x = einops.rearrange(x, 'B h (p1 C) -> B C (h p1)', h=h, p1=patch_size)
|
| 137 |
+
return x
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class PatchEmbed(nn.Module):
|
| 141 |
+
"""
|
| 142 |
+
Image to Patch Embedding
|
| 143 |
+
"""
|
| 144 |
+
def __init__(self, patch_size, in_chans=3, embed_dim=768, input_type='2d'):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.patch_size = patch_size
|
| 147 |
+
self.input_type = input_type
|
| 148 |
+
if input_type == '2d':
|
| 149 |
+
self.proj = nn.Conv2d(
|
| 150 |
+
in_chans,
|
| 151 |
+
embed_dim,
|
| 152 |
+
kernel_size=patch_size,
|
| 153 |
+
stride=patch_size,
|
| 154 |
+
bias=True
|
| 155 |
+
)
|
| 156 |
+
elif input_type == '1d':
|
| 157 |
+
self.proj = nn.Conv1d(
|
| 158 |
+
in_chans,
|
| 159 |
+
embed_dim,
|
| 160 |
+
kernel_size=patch_size,
|
| 161 |
+
stride=patch_size,
|
| 162 |
+
bias=True
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
def forward(self, x):
|
| 166 |
+
if self.input_type == '2d':
|
| 167 |
+
B, C, H, W = x.shape
|
| 168 |
+
assert H % self.patch_size == 0 and W % self.patch_size == 0
|
| 169 |
+
elif self.input_type == '1d':
|
| 170 |
+
B, C, H = x.shape
|
| 171 |
+
assert H % self.patch_size == 0
|
| 172 |
+
|
| 173 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
| 174 |
+
return x
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class PositionalConvEmbedding(nn.Module):
|
| 178 |
+
"""
|
| 179 |
+
Relative positional embedding used in HuBERT
|
| 180 |
+
"""
|
| 181 |
+
def __init__(self, dim=768, kernel_size=128, groups=16):
|
| 182 |
+
super().__init__()
|
| 183 |
+
self.conv = nn.Conv1d(
|
| 184 |
+
dim,
|
| 185 |
+
dim,
|
| 186 |
+
kernel_size=kernel_size,
|
| 187 |
+
padding=kernel_size // 2,
|
| 188 |
+
groups=groups,
|
| 189 |
+
bias=True
|
| 190 |
+
)
|
| 191 |
+
self.conv = nn.utils.parametrizations.weight_norm(
|
| 192 |
+
self.conv, name="weight", dim=2
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
def forward(self, x):
|
| 196 |
+
# B C T
|
| 197 |
+
x = self.conv(x)
|
| 198 |
+
x = F.gelu(x[:, :, :-1])
|
| 199 |
+
return x
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
class SinusoidalPositionalEncoding(nn.Module):
|
| 203 |
+
def __init__(self, dim, length):
|
| 204 |
+
super(SinusoidalPositionalEncoding, self).__init__()
|
| 205 |
+
self.length = length
|
| 206 |
+
self.dim = dim
|
| 207 |
+
self.register_buffer(
|
| 208 |
+
'pe', self._generate_positional_encoding(length, dim)
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
def _generate_positional_encoding(self, length, dim):
|
| 212 |
+
pe = torch.zeros(length, dim)
|
| 213 |
+
position = torch.arange(0, length, dtype=torch.float).unsqueeze(1)
|
| 214 |
+
div_term = torch.exp(
|
| 215 |
+
torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim)
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 219 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 220 |
+
|
| 221 |
+
pe = pe.unsqueeze(0)
|
| 222 |
+
return pe
|
| 223 |
+
|
| 224 |
+
def forward(self, x):
|
| 225 |
+
x = x + self.pe[:, :x.size(1)]
|
| 226 |
+
return x
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class PE_wrapper(nn.Module):
|
| 230 |
+
def __init__(self, dim=768, method='abs', length=None, **kwargs):
|
| 231 |
+
super().__init__()
|
| 232 |
+
self.method = method
|
| 233 |
+
if method == 'abs':
|
| 234 |
+
# init absolute pe like UViT
|
| 235 |
+
self.length = length
|
| 236 |
+
self.abs_pe = nn.Parameter(torch.zeros(1, length, dim))
|
| 237 |
+
trunc_normal_(self.abs_pe, std=.02)
|
| 238 |
+
elif method == 'conv':
|
| 239 |
+
self.conv_pe = PositionalConvEmbedding(dim=dim, **kwargs)
|
| 240 |
+
elif method == 'sinu':
|
| 241 |
+
self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length)
|
| 242 |
+
elif method == 'none':
|
| 243 |
+
# skip pe
|
| 244 |
+
self.id = nn.Identity()
|
| 245 |
+
else:
|
| 246 |
+
raise NotImplementedError
|
| 247 |
+
|
| 248 |
+
def forward(self, x):
|
| 249 |
+
if self.method == 'abs':
|
| 250 |
+
_, L, _ = x.shape
|
| 251 |
+
assert L <= self.length
|
| 252 |
+
x = x + self.abs_pe[:, :L, :]
|
| 253 |
+
elif self.method == 'conv':
|
| 254 |
+
x = x + self.conv_pe(x)
|
| 255 |
+
elif self.method == 'sinu':
|
| 256 |
+
x = self.sinu_pe(x)
|
| 257 |
+
elif self.method == 'none':
|
| 258 |
+
x = self.id(x)
|
| 259 |
+
else:
|
| 260 |
+
raise NotImplementedError
|
| 261 |
+
return x
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
class RMSNorm(torch.nn.Module):
|
| 265 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 266 |
+
"""
|
| 267 |
+
Initialize the RMSNorm normalization layer.
|
| 268 |
+
|
| 269 |
+
Args:
|
| 270 |
+
dim (int): The dimension of the input tensor.
|
| 271 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
| 272 |
+
|
| 273 |
+
Attributes:
|
| 274 |
+
eps (float): A small value added to the denominator for numerical stability.
|
| 275 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
| 276 |
+
|
| 277 |
+
"""
|
| 278 |
+
super().__init__()
|
| 279 |
+
self.eps = eps
|
| 280 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 281 |
+
|
| 282 |
+
def _norm(self, x):
|
| 283 |
+
"""
|
| 284 |
+
Apply the RMSNorm normalization to the input tensor.
|
| 285 |
+
|
| 286 |
+
Args:
|
| 287 |
+
x (torch.Tensor): The input tensor.
|
| 288 |
+
|
| 289 |
+
Returns:
|
| 290 |
+
torch.Tensor: The normalized tensor.
|
| 291 |
+
|
| 292 |
+
"""
|
| 293 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 294 |
+
|
| 295 |
+
def forward(self, x):
|
| 296 |
+
"""
|
| 297 |
+
Forward pass through the RMSNorm layer.
|
| 298 |
+
|
| 299 |
+
Args:
|
| 300 |
+
x (torch.Tensor): The input tensor.
|
| 301 |
+
|
| 302 |
+
Returns:
|
| 303 |
+
torch.Tensor: The output tensor after applying RMSNorm.
|
| 304 |
+
|
| 305 |
+
"""
|
| 306 |
+
output = self._norm(x.float()).type_as(x)
|
| 307 |
+
return output * self.weight
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
class GELU(nn.Module):
|
| 311 |
+
def __init__(
|
| 312 |
+
self,
|
| 313 |
+
dim_in: int,
|
| 314 |
+
dim_out: int,
|
| 315 |
+
approximate: str = "none",
|
| 316 |
+
bias: bool = True
|
| 317 |
+
):
|
| 318 |
+
super().__init__()
|
| 319 |
+
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
| 320 |
+
self.approximate = approximate
|
| 321 |
+
|
| 322 |
+
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
| 323 |
+
if gate.device.type != "mps":
|
| 324 |
+
return F.gelu(gate, approximate=self.approximate)
|
| 325 |
+
# mps: gelu is not implemented for float16
|
| 326 |
+
return F.gelu(
|
| 327 |
+
gate.to(dtype=torch.float32), approximate=self.approximate
|
| 328 |
+
).to(dtype=gate.dtype)
|
| 329 |
+
|
| 330 |
+
def forward(self, hidden_states):
|
| 331 |
+
hidden_states = self.proj(hidden_states)
|
| 332 |
+
hidden_states = self.gelu(hidden_states)
|
| 333 |
+
return hidden_states
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
class GEGLU(nn.Module):
|
| 337 |
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
| 338 |
+
super().__init__()
|
| 339 |
+
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
|
| 340 |
+
|
| 341 |
+
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
| 342 |
+
if gate.device.type != "mps":
|
| 343 |
+
return F.gelu(gate)
|
| 344 |
+
# mps: gelu is not implemented for float16
|
| 345 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
| 346 |
+
|
| 347 |
+
def forward(self, hidden_states):
|
| 348 |
+
hidden_states = self.proj(hidden_states)
|
| 349 |
+
hidden_states, gate = hidden_states.chunk(2, dim=-1)
|
| 350 |
+
return hidden_states * self.gelu(gate)
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
class ApproximateGELU(nn.Module):
|
| 354 |
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
| 355 |
+
super().__init__()
|
| 356 |
+
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
| 357 |
+
|
| 358 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 359 |
+
x = self.proj(x)
|
| 360 |
+
return x * torch.sigmoid(1.702 * x)
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
# disable in checkpoint mode
|
| 364 |
+
# @torch.jit.script
|
| 365 |
+
def snake_beta(x, alpha, beta):
|
| 366 |
+
return x + beta * torch.sin(x * alpha).pow(2)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class Snake(nn.Module):
|
| 370 |
+
def __init__(self, dim_in, dim_out, bias, alpha_trainable=True):
|
| 371 |
+
super().__init__()
|
| 372 |
+
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
| 373 |
+
self.alpha = nn.Parameter(torch.ones(1, 1, dim_out))
|
| 374 |
+
self.beta = nn.Parameter(torch.ones(1, 1, dim_out))
|
| 375 |
+
self.alpha.requires_grad = alpha_trainable
|
| 376 |
+
self.beta.requires_grad = alpha_trainable
|
| 377 |
+
|
| 378 |
+
def forward(self, x):
|
| 379 |
+
x = self.proj(x)
|
| 380 |
+
x = snake_beta(x, self.alpha, self.beta)
|
| 381 |
+
return x
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
class GESnake(nn.Module):
|
| 385 |
+
def __init__(self, dim_in, dim_out, bias, alpha_trainable=True):
|
| 386 |
+
super().__init__()
|
| 387 |
+
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
|
| 388 |
+
self.alpha = nn.Parameter(torch.ones(1, 1, dim_out))
|
| 389 |
+
self.beta = nn.Parameter(torch.ones(1, 1, dim_out))
|
| 390 |
+
self.alpha.requires_grad = alpha_trainable
|
| 391 |
+
self.beta.requires_grad = alpha_trainable
|
| 392 |
+
|
| 393 |
+
def forward(self, x):
|
| 394 |
+
x = self.proj(x)
|
| 395 |
+
x, gate = x.chunk(2, dim=-1)
|
| 396 |
+
return x * snake_beta(gate, self.alpha, self.beta)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
class FeedForward(nn.Module):
|
| 400 |
+
def __init__(
|
| 401 |
+
self,
|
| 402 |
+
dim,
|
| 403 |
+
dim_out=None,
|
| 404 |
+
mult=4,
|
| 405 |
+
dropout=0.0,
|
| 406 |
+
activation_fn="geglu",
|
| 407 |
+
final_dropout=False,
|
| 408 |
+
inner_dim=None,
|
| 409 |
+
bias=True,
|
| 410 |
+
):
|
| 411 |
+
super().__init__()
|
| 412 |
+
if inner_dim is None:
|
| 413 |
+
inner_dim = int(dim * mult)
|
| 414 |
+
dim_out = dim_out if dim_out is not None else dim
|
| 415 |
+
|
| 416 |
+
if activation_fn == "gelu":
|
| 417 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
| 418 |
+
elif activation_fn == "gelu-approximate":
|
| 419 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
| 420 |
+
elif activation_fn == "geglu":
|
| 421 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
| 422 |
+
elif activation_fn == "geglu-approximate":
|
| 423 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
| 424 |
+
elif activation_fn == "snake":
|
| 425 |
+
act_fn = Snake(dim, inner_dim, bias=bias)
|
| 426 |
+
elif activation_fn == "gesnake":
|
| 427 |
+
act_fn = GESnake(dim, inner_dim, bias=bias)
|
| 428 |
+
else:
|
| 429 |
+
raise NotImplementedError
|
| 430 |
+
|
| 431 |
+
self.net = nn.ModuleList([])
|
| 432 |
+
# project in
|
| 433 |
+
self.net.append(act_fn)
|
| 434 |
+
# project dropout
|
| 435 |
+
self.net.append(nn.Dropout(dropout))
|
| 436 |
+
# project out
|
| 437 |
+
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
|
| 438 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
| 439 |
+
if final_dropout:
|
| 440 |
+
self.net.append(nn.Dropout(dropout))
|
| 441 |
+
|
| 442 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 443 |
+
for module in self.net:
|
| 444 |
+
hidden_states = module(hidden_states)
|
| 445 |
+
return hidden_states
|
models/dit/rotary.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
"this rope is faster than llama rope with jit script"
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def rotate_half(x):
|
| 6 |
+
x1, x2 = x.chunk(2, dim=-1)
|
| 7 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# disable in checkpoint mode
|
| 11 |
+
# @torch.jit.script
|
| 12 |
+
def apply_rotary_pos_emb(x, cos, sin):
|
| 13 |
+
# NOTE: This could probably be moved to Triton
|
| 14 |
+
# Handle a possible sequence length mismatch in between q and k
|
| 15 |
+
cos = cos[:, :, :x.shape[-2], :]
|
| 16 |
+
sin = sin[:, :, :x.shape[-2], :]
|
| 17 |
+
return (x*cos) + (rotate_half(x) * sin)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 21 |
+
"""
|
| 22 |
+
The rotary position embeddings from RoFormer_ (Su et. al).
|
| 23 |
+
A crucial insight from the method is that the query and keys are
|
| 24 |
+
transformed by rotation matrices which depend on the relative positions.
|
| 25 |
+
|
| 26 |
+
Other implementations are available in the Rotary Transformer repo_ and in
|
| 27 |
+
GPT-NeoX_, GPT-NeoX was an inspiration
|
| 28 |
+
|
| 29 |
+
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
| 30 |
+
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
| 31 |
+
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
.. warning: Please note that this embedding is not registered on purpose, as it is transformative
|
| 35 |
+
(it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis
|
| 36 |
+
"""
|
| 37 |
+
def __init__(self, dim: int):
|
| 38 |
+
super().__init__()
|
| 39 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
| 40 |
+
inv_freq = 1.0 / (10000**(torch.arange(0, dim, 2).float() / dim))
|
| 41 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 42 |
+
self._seq_len_cached = None
|
| 43 |
+
self._cos_cached = None
|
| 44 |
+
self._sin_cached = None
|
| 45 |
+
|
| 46 |
+
def _update_cos_sin_tables(self, x, seq_dimension=-2):
|
| 47 |
+
# expect input: B, H, L, D
|
| 48 |
+
seq_len = x.shape[seq_dimension]
|
| 49 |
+
|
| 50 |
+
# Reset the tables if the sequence length has changed,
|
| 51 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
| 52 |
+
# also make sure dtype wont change
|
| 53 |
+
if (
|
| 54 |
+
seq_len != self._seq_len_cached or
|
| 55 |
+
self._cos_cached.device != x.device or
|
| 56 |
+
self._cos_cached.dtype != x.dtype
|
| 57 |
+
):
|
| 58 |
+
self._seq_len_cached = seq_len
|
| 59 |
+
t = torch.arange(
|
| 60 |
+
x.shape[seq_dimension], device=x.device, dtype=torch.float32
|
| 61 |
+
)
|
| 62 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq.to(x.dtype))
|
| 63 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 64 |
+
|
| 65 |
+
self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype)
|
| 66 |
+
self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype)
|
| 67 |
+
|
| 68 |
+
return self._cos_cached, self._sin_cached
|
| 69 |
+
|
| 70 |
+
def forward(self, q, k):
|
| 71 |
+
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
|
| 72 |
+
q.float(), seq_dimension=-2
|
| 73 |
+
)
|
| 74 |
+
if k is not None:
|
| 75 |
+
return (
|
| 76 |
+
apply_rotary_pos_emb(
|
| 77 |
+
q.float(), self._cos_cached, self._sin_cached
|
| 78 |
+
).type_as(q),
|
| 79 |
+
apply_rotary_pos_emb(
|
| 80 |
+
k.float(), self._cos_cached, self._sin_cached
|
| 81 |
+
).type_as(k),
|
| 82 |
+
)
|
| 83 |
+
else:
|
| 84 |
+
return (
|
| 85 |
+
apply_rotary_pos_emb(
|
| 86 |
+
q.float(), self._cos_cached, self._sin_cached
|
| 87 |
+
).type_as(q), None
|
| 88 |
+
)
|
models/dit/span_mask.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from typing import Optional, Tuple
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def compute_mask_indices(
|
| 7 |
+
shape: Tuple[int, int],
|
| 8 |
+
padding_mask: Optional[torch.Tensor],
|
| 9 |
+
mask_prob: float,
|
| 10 |
+
mask_length: int,
|
| 11 |
+
mask_type: str = "static",
|
| 12 |
+
mask_other: float = 0.0,
|
| 13 |
+
min_masks: int = 0,
|
| 14 |
+
no_overlap: bool = False,
|
| 15 |
+
min_space: int = 0,
|
| 16 |
+
) -> np.ndarray:
|
| 17 |
+
"""
|
| 18 |
+
Computes random mask spans for a given shape
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
shape: the the shape for which to compute masks.
|
| 22 |
+
should be of size 2 where first element is batch size and 2nd is timesteps
|
| 23 |
+
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
| 24 |
+
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
| 25 |
+
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
| 26 |
+
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
| 27 |
+
mask_type: how to compute mask lengths
|
| 28 |
+
static = fixed size
|
| 29 |
+
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
| 30 |
+
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
| 31 |
+
poisson = sample from possion distribution with lambda = mask length
|
| 32 |
+
min_masks: minimum number of masked spans
|
| 33 |
+
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
| 34 |
+
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
bsz, all_sz = shape
|
| 38 |
+
mask = np.full((bsz, all_sz), False)
|
| 39 |
+
|
| 40 |
+
# Convert mask_prob to a NumPy array
|
| 41 |
+
mask_prob = np.array(mask_prob)
|
| 42 |
+
|
| 43 |
+
# Calculate all_num_mask for each element in the batch
|
| 44 |
+
all_num_mask = np.floor(
|
| 45 |
+
mask_prob * all_sz / float(mask_length) + np.random.rand(bsz)
|
| 46 |
+
).astype(int)
|
| 47 |
+
|
| 48 |
+
# Apply the max operation with min_masks for each element
|
| 49 |
+
all_num_mask = np.maximum(min_masks, all_num_mask)
|
| 50 |
+
|
| 51 |
+
mask_idcs = []
|
| 52 |
+
for i in range(bsz):
|
| 53 |
+
if padding_mask is not None:
|
| 54 |
+
sz = all_sz - padding_mask[i].long().sum().item()
|
| 55 |
+
num_mask = int(
|
| 56 |
+
# add a random number for probabilistic rounding
|
| 57 |
+
mask_prob * sz / float(mask_length) + np.random.rand()
|
| 58 |
+
)
|
| 59 |
+
num_mask = max(min_masks, num_mask)
|
| 60 |
+
else:
|
| 61 |
+
sz = all_sz
|
| 62 |
+
num_mask = all_num_mask[i]
|
| 63 |
+
|
| 64 |
+
if mask_type == "static":
|
| 65 |
+
lengths = np.full(num_mask, mask_length)
|
| 66 |
+
elif mask_type == "uniform":
|
| 67 |
+
lengths = np.random.randint(
|
| 68 |
+
mask_other, mask_length*2 + 1, size=num_mask
|
| 69 |
+
)
|
| 70 |
+
elif mask_type == "normal":
|
| 71 |
+
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
|
| 72 |
+
lengths = [max(1, int(round(x))) for x in lengths]
|
| 73 |
+
elif mask_type == "poisson":
|
| 74 |
+
lengths = np.random.poisson(mask_length, size=num_mask)
|
| 75 |
+
lengths = [int(round(x)) for x in lengths]
|
| 76 |
+
else:
|
| 77 |
+
raise Exception("unknown mask selection " + mask_type)
|
| 78 |
+
|
| 79 |
+
if sum(lengths) == 0:
|
| 80 |
+
lengths[0] = min(mask_length, sz - 1)
|
| 81 |
+
|
| 82 |
+
if no_overlap:
|
| 83 |
+
mask_idc = []
|
| 84 |
+
|
| 85 |
+
def arrange(s, e, length, keep_length):
|
| 86 |
+
span_start = np.random.randint(s, e - length)
|
| 87 |
+
mask_idc.extend(span_start + i for i in range(length))
|
| 88 |
+
|
| 89 |
+
new_parts = []
|
| 90 |
+
if span_start - s - min_space >= keep_length:
|
| 91 |
+
new_parts.append((s, span_start - min_space + 1))
|
| 92 |
+
if e - span_start - keep_length - min_space > keep_length:
|
| 93 |
+
new_parts.append((span_start + length + min_space, e))
|
| 94 |
+
return new_parts
|
| 95 |
+
|
| 96 |
+
parts = [(0, sz)]
|
| 97 |
+
min_length = min(lengths)
|
| 98 |
+
for length in sorted(lengths, reverse=True):
|
| 99 |
+
lens = np.fromiter(
|
| 100 |
+
(
|
| 101 |
+
e - s if e - s >= length + min_space else 0
|
| 102 |
+
for s, e in parts
|
| 103 |
+
),
|
| 104 |
+
np.int,
|
| 105 |
+
)
|
| 106 |
+
l_sum = np.sum(lens)
|
| 107 |
+
if l_sum == 0:
|
| 108 |
+
break
|
| 109 |
+
probs = lens / np.sum(lens)
|
| 110 |
+
c = np.random.choice(len(parts), p=probs)
|
| 111 |
+
s, e = parts.pop(c)
|
| 112 |
+
parts.extend(arrange(s, e, length, min_length))
|
| 113 |
+
mask_idc = np.asarray(mask_idc)
|
| 114 |
+
else:
|
| 115 |
+
min_len = min(lengths)
|
| 116 |
+
if sz - min_len <= num_mask:
|
| 117 |
+
min_len = sz - num_mask - 1
|
| 118 |
+
|
| 119 |
+
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
|
| 120 |
+
|
| 121 |
+
mask_idc = np.asarray([
|
| 122 |
+
mask_idc[j] + offset for j in range(len(mask_idc))
|
| 123 |
+
for offset in range(lengths[j])
|
| 124 |
+
])
|
| 125 |
+
|
| 126 |
+
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
|
| 127 |
+
# min_len = min([len(m) for m in mask_idcs])
|
| 128 |
+
for i, mask_idc in enumerate(mask_idcs):
|
| 129 |
+
# if len(mask_idc) > min_len:
|
| 130 |
+
# mask_idc = np.random.choice(mask_idc, min_len, replace=False)
|
| 131 |
+
mask[i, mask_idc] = True
|
| 132 |
+
|
| 133 |
+
return torch.tensor(mask)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
if __name__ == '__main__':
|
| 137 |
+
mask = compute_mask_indices(
|
| 138 |
+
shape=[4, 500],
|
| 139 |
+
padding_mask=None,
|
| 140 |
+
mask_prob=[0.65, 0.5, 0.65, 0.65],
|
| 141 |
+
mask_length=10,
|
| 142 |
+
mask_type="static",
|
| 143 |
+
mask_other=0.0,
|
| 144 |
+
min_masks=1,
|
| 145 |
+
no_overlap=False,
|
| 146 |
+
min_space=0,
|
| 147 |
+
)
|
| 148 |
+
print(mask)
|
| 149 |
+
print(mask.sum(dim=1))
|