pandora-s commited on
Commit
302b56d
Β·
verified Β·
1 Parent(s): 8055d0a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -7
app.py CHANGED
@@ -6,21 +6,39 @@ from threading import Timer
6
 
7
  HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
8
  def get_available_free():
9
- models = InferenceClient(token=HUGGINGFACE_TOKEN).list_deployed_models("text-generation-inference")['text-generation']
 
 
 
10
  models_conclusion = {
11
  "Model": [],
12
  "API": [],
13
  "Text Completion": [],
14
- "Chat Completion": []
 
15
  }
16
- for m in models:
17
  text_available = False
18
  chat_available = False
 
 
 
19
  pro_sub = False
20
  try:
21
  InferenceClient(m, timeout=10, token=HUGGINGFACE_TOKEN).text_generation("Hi.", max_new_tokens=1)
22
  text_available = True
23
- InferenceClient(m, timeout=10, token=HUGGINGFACE_TOKEN).chat_completion(messages=[{'role': 'user', 'content': 'Hi.'}], max_tokens=1)
 
 
 
 
 
 
 
 
 
 
 
24
  chat_available = True
25
  except Exception as e:
26
  print(e)
@@ -36,6 +54,7 @@ def get_available_free():
36
  models_conclusion["API"].append("Free" if chat_available or text_available else ("Pro Subscription" if pro_sub else "Not Responding"))
37
  models_conclusion["Chat Completion"].append("---" if (pro_sub or (not chat_available and not text_available)) else ("βœ“" if chat_available else "βŒ€"))
38
  models_conclusion["Text Completion"].append("---" if (pro_sub or (not chat_available and not text_available)) else ("βœ“" if text_available else "βŒ€"))
 
39
  pd.DataFrame(models_conclusion).to_csv("data.csv", index=False)
40
  return models_conclusion
41
 
@@ -48,7 +67,7 @@ def update_data():
48
  df['Text Completion'] = df['Text Completion'].map(status_mapping)
49
  df['Chat Completion'] = df['Chat Completion'].map(status_mapping)
50
 
51
- df = df.sort_values(by=['API', 'Text Completion', 'Chat Completion'])
52
 
53
  df['Text Completion'] = df['Text Completion'].map({v: k for k, v in status_mapping.items()})
54
  df['Chat Completion'] = df['Chat Completion'].map({v: k for k, v in status_mapping.items()})
@@ -62,7 +81,7 @@ def display_table(search_query=""):
62
  else:
63
  filtered_df = df
64
 
65
- styled_df = filtered_df.style.apply(apply_row_styles, axis=1, subset=["Model", "API", "Text Completion", "Chat Completion"])
66
  return styled_df
67
 
68
  def apply_row_styles(row):
@@ -71,7 +90,8 @@ def apply_row_styles(row):
71
  color_status(api_value, row["Model"]),
72
  color_status(api_value, row["API"]),
73
  color_status(api_value, row["Text Completion"]),
74
- color_status(api_value, row["Chat Completion"])
 
75
  ]
76
 
77
  def color_status(api_value, cell_value):
 
6
 
7
  HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
8
  def get_available_free():
9
+ models_dict = InferenceClient(token=HUGGINGFACE_TOKEN).list_deployed_models("text-generation-inference")
10
+ models = models_dict['text-generation'] + models_dict['text2text-generation'] #token=HUGGINGFACE_TOKEN
11
+ models_vision = models_dict['image-text-to-text']
12
+
13
  models_conclusion = {
14
  "Model": [],
15
  "API": [],
16
  "Text Completion": [],
17
+ "Chat Completion": [],
18
+ "Vision": []
19
  }
20
+ for m in models + models_vision:
21
  text_available = False
22
  chat_available = False
23
+ vision_available = False
24
+ if m in models_vision:
25
+ vision_available = True
26
  pro_sub = False
27
  try:
28
  InferenceClient(m, timeout=10, token=HUGGINGFACE_TOKEN).text_generation("Hi.", max_new_tokens=1)
29
  text_available = True
30
+ except Exception as e:
31
+ print(e)
32
+ if e and "Model requires a Pro subscription" in str(e):
33
+ pro_sub = True
34
+ if e and "Rate limit reached" in str(e):
35
+ print("Rate Limited!!")
36
+ if os.path.exists("data.csv"):
37
+ print("Loading data from file...")
38
+ return pd.read_csv("data.csv").to_dict(orient='list')
39
+ return []
40
+ try:
41
+ InferenceClient(m, timeout=10).chat_completion(messages=[{'role': 'user', 'content': 'Hi.'}], max_tokens=1) #token=HUGGINGFACE_TOKEN
42
  chat_available = True
43
  except Exception as e:
44
  print(e)
 
54
  models_conclusion["API"].append("Free" if chat_available or text_available else ("Pro Subscription" if pro_sub else "Not Responding"))
55
  models_conclusion["Chat Completion"].append("---" if (pro_sub or (not chat_available and not text_available)) else ("βœ“" if chat_available else "βŒ€"))
56
  models_conclusion["Text Completion"].append("---" if (pro_sub or (not chat_available and not text_available)) else ("βœ“" if text_available else "βŒ€"))
57
+ models_conclusion["Vision"].append("---" if (pro_sub or (not chat_available and not text_available)) else ("βœ“" if vision_available else "βŒ€"))
58
  pd.DataFrame(models_conclusion).to_csv("data.csv", index=False)
59
  return models_conclusion
60
 
 
67
  df['Text Completion'] = df['Text Completion'].map(status_mapping)
68
  df['Chat Completion'] = df['Chat Completion'].map(status_mapping)
69
 
70
+ df = df.sort_values(by=['API', 'Text Completion', 'Chat Completion', 'Vision'])
71
 
72
  df['Text Completion'] = df['Text Completion'].map({v: k for k, v in status_mapping.items()})
73
  df['Chat Completion'] = df['Chat Completion'].map({v: k for k, v in status_mapping.items()})
 
81
  else:
82
  filtered_df = df
83
 
84
+ styled_df = filtered_df.style.apply(apply_row_styles, axis=1, subset=["Model", "API", "Text Completion", "Chat Completion", "Vision"])
85
  return styled_df
86
 
87
  def apply_row_styles(row):
 
90
  color_status(api_value, row["Model"]),
91
  color_status(api_value, row["API"]),
92
  color_status(api_value, row["Text Completion"]),
93
+ color_status(api_value, row["Chat Completion"]),
94
+ color_status(api_value, row["Vision"])
95
  ]
96
 
97
  def color_status(api_value, cell_value):