Spaces:
Running
on
Zero
(BEiT-3) Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks
Official PyTorch implementation and pretrained models of BEiT-3.
The code and pretrained models of BEiT can be found at here.
The code and pretrained models of BEiT v2 can be found at here.
- March, 2023: release the code and pretrained models of BEiT-3
- March, 2023: BEiT-3 was accepted by CVPR 2023.
- Sept 2022: release the code and pretrained models of BEiT v2
- Aug 2022: release preprint Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks
- Aug 2022: release preprint BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers
- June 2022: release preprint VL-BEiT: Generative Vision-Language Pretraining
- March, 2022: add linear probe examples
- January, 2022: BEiT was accepted by ICLR 2022 as Oral presentation (54 out of 3391).
- August 2021: BEiT is on HuggingFace
- July 2021: BEiT-large achieves state-of-the-art results on ADE20K (a big jump to 57.0 mIoU) for semantic segmentation.
- July 2021: BEiT-large achieves state-of-the-art ImageNet top-1 accuracy (88.6%) under the setting without extra data other than ImageNet-22k.
- July 2021: release the code and pretrained models of BEiT
- June 2021: release preprint BEiT: BERT Pre-Training of Image Transformers
Pretrained models
We provide BEiT-3 weights pretrained on monomodal and multimodal data. Our large-size model outperforms previous large-size models across various vision-language and vision downstream tasks. The models were pretrained with 224x224 resolution.
Tips
- For vision-language tasks that require deep fusion, we recommend using
BEiT3-base
andBEiT3-large
. - For image-text retrieval or vision tasks, using
BEiT3-base-itc
andBEiT3-large-itc
usually achieve better performance.
Download Checkpoints
Models pretrained on ImageNet-21k images, 160 GB text documents, and web-scale image-text pairs (collected from LAION-400M, English LAION-2B, COYO-700M, and CC15M).
BEiT3-base
: #layer=12; hidden=768; FFN factor=4x; #head=12; patch=16x16; #parameters: 276MBEiT3-large
: #layer=24; hidden=1024; FFN factor=4x; #head=16; patch=16x16; #parameters: 746M
Perform image-text contrastive intermediate tuning on
BEiT3-base
andBEiT3-large
.BEiT3-base-itc
: #layer=12; hidden=768; FFN factor=4x; #head=12; patch=16x16; #parameters: 222MBEiT3-large-itc
: #layer=24; hidden=1024; FFN factor=4x; #head=16; patch=16x16; #parameters: 674M
Add indomain image-text pairs (COCO and VG) to continue training
BEiT3-base
andBEiT3-large
using masked data modeling. The indomain models achieve better performance on VQAv2 and NLVR2 tasks.BEiT3-base-indomain
: #layer=12; hidden=768; FFN factor=4x; #head=12; patch=16x16; #parameters: 276MBEiT3-large-indomain
: #layer=24; hidden=1024; FFN factor=4x; #head=16; patch=16x16; #parameters: 746M
Text Tokenizer
beit3.spm is the sentencepiece model used for tokenizing texts.
from transformers import XLMRobertaTokenizer
tokenizer = XLMRobertaTokenizer("/your_beit3_model_path/beit3.spm")
Architecture
We use Magneto with decoupled Multiway Transformer as the backbone architecture. Magneto can have better training stability and obtain better performance across modalities (such as vision, and language). The implementation is based on the torchscale package.
Setup
alias=`whoami | cut -d'.' -f2`; docker run -it --rm --runtime=nvidia --ipc=host --privileged -v /home/${alias}:/home/${alias} pytorch/pytorch:1.8.1-cuda11.1-cudnn8-devel bash
Clone the repo and install required packages:
git clone https://github.com/microsoft/unilm.git
cd unilm/beit3
pip install -r requirements.txt
Fine-tuning on ImageNet-1k (Image Classification)
The detailed instructions can be found at get_started_for_image_classification.md
. We only use vision-related parameters for image classification fine-tuning.
initialized checkpoint | resolution | acc@1 | acc@5 | #params | weight |
---|---|---|---|---|---|
beit3_base_patch16_224 | 224x224 | 85.4 | 97.6 | 87M | link |
beit3_base_indomain_patch16_224 | 224x224 | 85.4 | 97.6 | 87M | link |
beit3_large_patch16_224 | 224x224 | 87.6 | 98.3 | 305M | link |
beit3_large_indomain_patch16_224 | 224x224 | 87.5 | 98.3 | 305M | link |
Fine-tuning on VQAv2 (Visual Question Answering)
The detailed instructions can be found at get_started_for_vqav2.md
.
initialized checkpoint | resolution | augmented data | test-dev | test-std | #params | weight |
---|---|---|---|---|---|---|
beit3_base_patch16_224 | 480x480 | - | 77.65 | - | 228M | link |
beit3_base_indomain_patch16_224 | 480x480 | - | 78.46 | - | 228M | link |
beit3_large_patch16_224 | 480x480 | - | 81.85 | - | 683M | link |
beit3_large_indomain_patch16_224 | 480x480 | - | 82.53 | - | 683M | link |
beit3_large_indomain_patch16_224 | 768x768 | VGQA | 82.97 | 83.03 | 684M | link |
Fine-tuning on NLVR2 (Visual Reasoning)
The detailed instructions can be found at get_started_for_nlvr2.md
.
initialized checkpoint | resolution | dev | test-P | #params | weight |
---|---|---|---|---|---|
beit3_base_patch16_224 | 224x224 | 83.6 | 84.4 | 226M | link |
beit3_base_indomain_patch16_224 | 224x224 | 84.6 | 85.3 | 226M | link |
beit3_large_patch16_224 | 224x224 | 88.5 | 89.4 | 681M | link |
beit3_large_indomain_patch16_224 | 224x224 | 89.2 | 90.0 | 681M | link |
Fine-tuning on COCO Captioning and NoCaps (Image Captioning)
The detailed instructions can be found at get_started_for_image_captioning.md
.
COCO Captioning
initialized checkpoint | resolution | test CIDEr | #params | weight |
---|---|---|---|---|
beit3_base_patch16_224 | 480x480 | 133.6 | 271M | link |
beit3_base_indomain_patch16_224 | 480x480 | 135.0 | 271M | link |
beit3_large_patch16_224 | 480x480 | 143.2 | 739M | link |
NoCaps
initialized checkpoint | resolution | val CIDEr | #params | weight |
---|---|---|---|---|
beit3_base_patch16_224 | 480x480 | 104.4 | 271M | link |
beit3_base_indomain_patch16_224 | 480x480 | 105.6 | 271M | link |
beit3_large_patch16_224 | 480x480 | 120.2 | 739M | link |
Fine-tuning on COCO and Flickr30k Retrieval (Image-Text Retrieval)
The detailed instructions can be found at get_started_for_retrieval.md
.
COCO Retrieval
initialized checkpoint | resolution | IR@1 | TR@1 | #params | weight |
---|---|---|---|---|---|
beit3_base_itc_patch16_224 | 384x384 | 61.4 | 79.1 | 222M | link |
beit3_large_itc_patch16_224 | 384x384 | 63.4 | 82.1 | 675M | link |
Flickr30k Retrieval
initialized checkpoint | resolution | IR@1 | TR@1 | #params | weight |
---|---|---|---|---|---|
beit3_base_itc_patch16_224 | 384x384 | 86.2 | 96.3 | 222M | link |
beit3_large_itc_patch16_224 | 384x384 | 88.1 | 97.2 | 675M | link |
Citation
If you find this repository useful, please consider citing our work:
@inproceedings{beit3,
title={Image as a foreign language: {BEiT} pretraining for vision and vision-language tasks},
author={Wenhui Wang and Hangbo Bao and Li Dong and Johan Bjorck and Zhiliang Peng and Qiang Liu and Kriti Aggarwal and Owais Khan Mohammed and Saksham Singhal and Subhojit Som and Furu Wei},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2023}
}
@article{beitv2,
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers},
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei},
year={2022},
eprint={2208.06366},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inproceedings{beit,
title={{BEiT}: {BERT} Pre-Training of Image Transformers},
author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=p-BhZSz59o4}
}
Acknowledgement
This repository is built using the BEiT, the BEiTv2, the CLIP, the open_clip, the Oscar, the DeiT, the Dino repository and the timm library.
License
This project is licensed under the license found in the LICENSE file in the root directory of this source tree.
Microsoft Open Source Code of Conduct
Contact Information
For help or issues using BEiT-3 models, please submit a GitHub issue.