whisper-app / app.py
wjbmattingly's picture
fixed microphone
e9f9f9c
import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import torch
from transformers import pipeline
import spaces
BATCH_SIZE = 8
# Load the model and processor
MODEL_NAME = "TheirStory/whisper-small-xhosa"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
@spaces.GPU
def transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
return text
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(type="filepath", label="Audio file"),
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
theme="huggingface",
title="Whisper App",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([file_transcribe], ["Microphone"])
# Launch the app
demo.launch()