carcal-api / app.py
William Mattingly
updated the app
2fdca7c
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, Qwen2_5_VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import subprocess
from datetime import datetime
import numpy as np
import os
from gliner import GLiNER
import json
import tempfile
import zipfile
import base64
import io
# Initialize GLiNER model
gliner_model = GLiNER.from_pretrained("knowledgator/modern-gliner-bi-large-v1.0")
DEFAULT_NER_LABELS = "person, organization, location, date, event"
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# models = {
# "Qwen/Qwen2-VL-7B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
# }
class TextWithMetadata(list):
def __init__(self, *args, **kwargs):
super().__init__(*args)
self.original_text = kwargs.get('original_text', '')
self.entities = kwargs.get('entities', [])
def array_to_image_path(image_array):
# Convert numpy array to PIL Image
img = Image.fromarray(np.uint8(image_array))
img.thumbnail((1024, 1024))
# Generate a unique filename using timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
# Save the image
img.save(filename)
# Get the full path of the saved image
full_path = os.path.abspath(filename)
return full_path
models = {
"Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
}
processors = {
"Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True)
}
DESCRIPTION = "This demo uses[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)"
kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
@spaces.GPU
def run_example(image, model_id="Qwen/Qwen2.5-VL-7B-Instruct", run_ner=False, ner_labels=DEFAULT_NER_LABELS):
# First get the OCR text
text_input = "Convert the image to text."
# Print debug info about the image type
print(f"Image type: {type(image)}")
print(f"Image value: {image}")
# Robust handling of image input
try:
# Handle None or empty input
if image is None:
raise ValueError("Image input is None")
# Handle dictionary input (from API)
if isinstance(image, dict):
if 'data' in image and isinstance(image['data'], str) and image['data'].startswith('data:image'):
# Extract the base64 part
base64_data = image['data'].split(',', 1)[1]
# Convert base64 to bytes, then to PIL Image
image_bytes = base64.b64decode(base64_data)
pil_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
# Convert to numpy array
image = np.array(pil_image)
else:
raise ValueError(f"Invalid image dictionary format: {image}")
# Convert string path to image if needed
if isinstance(image, str):
pil_image = Image.open(image).convert("RGB")
image = np.array(pil_image)
# Ensure image is a numpy array
if not isinstance(image, np.ndarray):
raise ValueError(f"Unsupported image type: {type(image)}")
# Convert numpy array to image path
image_path = array_to_image_path(image)
model = models[model_id]
processor = processors[model_id]
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
pil_image = Image.fromarray(image).convert("RGB")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{"type": "text", "text": text_input},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
ocr_text = output_text[0]
# If NER is enabled, process the OCR text
if run_ner:
ner_results = gliner_model.predict_entities(
ocr_text,
ner_labels.split(","),
threshold=0.3
)
# Create a list of tuples (text, label) for highlighting
highlighted_text = []
last_end = 0
# Sort entities by start position
sorted_entities = sorted(ner_results, key=lambda x: x["start"])
# Process each entity and add non-entity text segments
for entity in sorted_entities:
# Add non-entity text before the current entity
if last_end < entity["start"]:
highlighted_text.append((ocr_text[last_end:entity["start"]], None))
# Add the entity text with its label
highlighted_text.append((
ocr_text[entity["start"]:entity["end"]],
entity["label"]
))
last_end = entity["end"]
# Add any remaining text after the last entity
if last_end < len(ocr_text):
highlighted_text.append((ocr_text[last_end:], None))
# Create TextWithMetadata instance with the highlighted text and metadata
result = TextWithMetadata(highlighted_text, original_text=ocr_text, entities=ner_results)
return result, result # Return twice: once for display, once for state
# If NER is disabled, return the text without highlighting
result = TextWithMetadata([(ocr_text, None)], original_text=ocr_text, entities=[])
return result, result # Return twice: once for display, once for state
except Exception as e:
import traceback
print(f"Error processing image: {e}")
print(traceback.format_exc())
# Return empty result on error
result = TextWithMetadata([("Error processing image: " + str(e), None)], original_text="Error: " + str(e), entities=[])
return result, result
with gr.Blocks() as demo:
# Add state variables to store OCR results
ocr_state = gr.State()
# gr.Image("Caracal.jpg", interactive=False)
with gr.Tab(label="Image Input", elem_classes="tabs"):
with gr.Row():
with gr.Column(elem_classes="input-container"):
input_img = gr.Image(label="Input Picture", elem_classes="gr-image-input")
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2.5-VL-7B-Instruct", elem_classes="gr-dropdown")
# Add NER controls
with gr.Row():
ner_checkbox = gr.Checkbox(label="Run Named Entity Recognition", value=False)
ner_labels = gr.Textbox(
label="NER Labels (comma-separated)",
value=DEFAULT_NER_LABELS,
visible=False
)
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
with gr.Column(elem_classes="output-container"):
output_text = gr.HighlightedText(label="Output Text", elem_id="output")
# Show/hide NER labels based on checkbox
ner_checkbox.change(
lambda x: gr.update(visible=x),
inputs=[ner_checkbox],
outputs=[ner_labels]
)
# Modify the submit button click handler to update state
submit_btn.click(
run_example,
inputs=[input_img, model_selector, ner_checkbox, ner_labels],
outputs=[output_text, ocr_state] # Add ocr_state to outputs
)
with gr.Row():
filename = gr.Textbox(label="Save filename (without extension)", placeholder="Enter filename to save")
download_btn = gr.Button("Download Image & Text", elem_classes="submit-btn")
download_output = gr.File(label="Download")
# Modify create_zip to use the state data
def create_zip(image, fname, ocr_result):
# Validate inputs
if not fname or image is None: # Changed the validation check
return None
try:
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
return None
with tempfile.TemporaryDirectory() as temp_dir:
# Save image
img_path = os.path.join(temp_dir, f"{fname}.png")
image.save(img_path)
# Use the OCR result from state
original_text = ocr_result.original_text if ocr_result else ""
entities = ocr_result.entities if ocr_result else []
# Save text
txt_path = os.path.join(temp_dir, f"{fname}.txt")
with open(txt_path, 'w', encoding='utf-8') as f:
f.write(original_text)
# Create JSON with text and entities
json_data = {
"text": original_text,
"entities": entities,
"image_file": f"{fname}.png"
}
# Save JSON
json_path = os.path.join(temp_dir, f"{fname}.json")
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(json_data, f, indent=2, ensure_ascii=False)
# Create zip file
output_dir = "downloads"
os.makedirs(output_dir, exist_ok=True)
zip_path = os.path.join(output_dir, f"{fname}.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
zipf.write(img_path, os.path.basename(img_path))
zipf.write(txt_path, os.path.basename(txt_path))
zipf.write(json_path, os.path.basename(json_path))
return zip_path
except Exception as e:
print(f"Error creating zip: {str(e)}")
return None
# Update the download button click handler to include state
download_btn.click(
create_zip,
inputs=[input_img, filename, ocr_state],
outputs=[download_output]
)
demo.queue(api_open=False)
demo.launch(debug=True)