wi-lab commited on
Commit
b636bbb
·
verified ·
1 Parent(s): ec91fe9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -24,7 +24,7 @@ def beam_prediction_task(data_percentage, task_complexity, theme):
24
  raw_cm = compute_average_confusion_matrix(raw_folder)
25
  if raw_cm is not None:
26
  raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
27
- plot_confusion_matrix_beamPred(raw_cm, classes=np.arange(raw_cm.shape[0]), title=f"Raw Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=raw_cm_path, theme)
28
  raw_img = Image.open(raw_cm_path)
29
  else:
30
  raw_img = None
@@ -33,7 +33,7 @@ def beam_prediction_task(data_percentage, task_complexity, theme):
33
  embeddings_cm = compute_average_confusion_matrix(embeddings_folder)
34
  if embeddings_cm is not None:
35
  embeddings_cm_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
36
- plot_confusion_matrix_beamPred(embeddings_cm, classes=np.arange(embeddings_cm.shape[0]), title=f"Embeddings Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=embeddings_cm_path, theme)
37
  embeddings_img = Image.open(embeddings_cm_path)
38
  else:
39
  embeddings_img = None
@@ -59,7 +59,7 @@ def compute_f1_score(cm):
59
  f1 = np.nan_to_num(f1) # Replace NaN with 0
60
  return np.mean(f1) # Return the mean F1-score across all classes
61
 
62
- def plot_confusion_matrix_beamPred(cm, classes, title, save_path, theme):
63
  # Compute the average F1-score
64
  avg_f1 = compute_f1_score(cm)
65
 
 
24
  raw_cm = compute_average_confusion_matrix(raw_folder)
25
  if raw_cm is not None:
26
  raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
27
+ plot_confusion_matrix_beamPred(raw_cm, classes=np.arange(raw_cm.shape[0]), title=f"Raw Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=raw_cm_path, theme=theme)
28
  raw_img = Image.open(raw_cm_path)
29
  else:
30
  raw_img = None
 
33
  embeddings_cm = compute_average_confusion_matrix(embeddings_folder)
34
  if embeddings_cm is not None:
35
  embeddings_cm_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
36
+ plot_confusion_matrix_beamPred(embeddings_cm, classes=np.arange(embeddings_cm.shape[0]), title=f"Embeddings Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=embeddings_cm_path, theme=theme)
37
  embeddings_img = Image.open(embeddings_cm_path)
38
  else:
39
  embeddings_img = None
 
59
  f1 = np.nan_to_num(f1) # Replace NaN with 0
60
  return np.mean(f1) # Return the mean F1-score across all classes
61
 
62
+ def plot_confusion_matrix_beamPred(cm, classes, title, save_path, theme=None):
63
  # Compute the average F1-score
64
  avg_f1 = compute_f1_score(cm)
65