Sadjad Alikhani
Update app.py
ef6f553 verified
raw
history blame
8.97 kB
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
# Specific values for percentage of data for training
percentage_values = np.arange(10) + 1
# Custom class to capture print output
class PrintCapture(io.StringIO):
def __init__(self):
super().__init__()
self.output = []
def write(self, txt):
self.output.append(txt)
super().write(txt)
def get_output(self):
return ''.join(self.output)
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx):
percentage = percentage_values[percentage_idx]
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
# Check if the images exist
if os.path.exists(raw_image_path):
raw_image = Image.open(raw_image_path)
else:
raw_image = create_random_image() # Use a fallback random image
if os.path.exists(embeddings_image_path):
embeddings_image = Image.open(embeddings_image_path)
else:
embeddings_image = create_random_image() # Use a fallback random image
return raw_image, embeddings_image
# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
random_image = np.random.rand(*size, 3) * 255
return Image.fromarray(random_image.astype('uint8'))
# Function to split dataset into training and test sets based on user selection
def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
N = output_emb.shape[0] # Get the total number of samples
# Generate the indices for shuffling and splitting
indices = torch.randperm(N) # Randomly shuffle the indices
# Calculate the split index
split_index = int(N * percentage_values[percentage_idx] / 10) # Convert percentage index to percentage value
print(f'Training Size: {split_index}')
# Split indices into train and test
train_indices = indices[:split_index]
test_indices = indices[split_index:]
# Select the same indices from both output_emb and output_raw
train_emb = output_emb[train_indices]
test_emb = output_emb[test_indices]
train_raw = output_raw[train_indices]
test_raw = output_raw[test_indices]
train_labels = labels[train_indices]
test_labels = labels[test_indices]
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels
# Function to calculate Euclidean distance between a point and a centroid
def classify_based_on_distance(train_data, train_labels, test_data):
centroid_0 = train_data[train_labels == 0].mean(dim=0)
centroid_1 = train_data[train_labels == 1].mean(dim=0)
predictions = []
for test_point in test_data:
dist_0 = torch.norm(test_point - centroid_0)
dist_1 = torch.norm(test_point - centroid_1)
predictions.append(0 if dist_0 < dist_1 else 1)
return torch.tensor(predictions)
# Function to generate confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(5, 5))
plt.imshow(cm, cmap='Blues')
plt.title(title)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.colorbar()
plt.xticks([0, 1], labels=[0, 1])
plt.yticks([0, 1], labels=[0, 1])
plt.tight_layout()
plt.savefig(f"{title}.png")
return Image.open(f"{title}.png")
# Function to handle inference and return the results (store the results to state)
def run_inference(uploaded_file):
capture = PrintCapture()
sys.stdout = capture # Redirect print statements to capture
try:
# Load the HDF5 file and extract channels and labels
with h5py.File(uploaded_file.name, 'r') as f:
channels = np.array(f['channels']) # Assuming 'channels' dataset in the HDF5 file
labels = np.array(f['labels']) # Assuming 'labels' dataset in the HDF5 file
print(f"Loaded dataset with {channels.shape[0]} samples.")
# Run the tokenization and model inference
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
model_repo_dir = "./LWM"
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Load the model
lwm_model_path = os.path.join(model_repo_dir, 'lwm_model.py')
input_preprocess_path = os.path.join(model_repo_dir, 'input_preprocess.py')
inference_path = os.path.join(model_repo_dir, 'inference.py')
# Load dynamically
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
inference = load_module_from_path("inference", inference_path)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading LWM model on {device}...")
model = lwm_model.LWM.from_pretrained(device=device).to(torch.float32)
# Preprocess and inference
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
print(f"Output Embeddings Shape: {output_emb.shape}")
print(f"Output Raw Shape: {output_raw.shape}")
return output_emb, output_raw, labels, capture.get_output()
except Exception as e:
return None, None, None, str(e)
finally:
sys.stdout = sys.__stdout__ # Reset print statements
# Function to handle classification after inference (using Gradio state)
def los_nlos_classification(output_emb, output_raw, labels, percentage_idx):
if output_emb is not None and output_raw is not None:
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(
output_emb.view(len(output_emb), -1),
output_raw.view(len(output_raw), -1),
labels,
percentage_idx
)
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
return raw_cm_image, emb_cm_image, "Classification successful"
return create_random_image(), create_random_image(), "No valid inference outputs"
# Define the Gradio interface
with gr.Blocks(css="""
.vertical-slider input[type=range] {
writing-mode: bt-lr; /* IE */
-webkit-appearance: slider-vertical; /* WebKit */
width: 8px;
height: 200px;
}
.slider-container {
display: inline-block;
margin-right: 50px;
text-align: center;
}
""") as demo:
# Tabs for Beam Prediction and LoS/NLoS Classification
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
with gr.Row():
percentage_dropdown_los = gr.Dropdown(
choices=[str(v) for v in percentage_values * 10],
value=10,
label="Percentage of Data for Training",
interactive=True
)
with gr.Row():
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
output_textbox = gr.Textbox(label="Console Output", lines=10)
# Process file upload to run inference
inference_output = gr.State()
file_input.upload(run_inference, inputs=file_input, outputs=inference_output)
# Handle dropdown change for classification
percentage_dropdown_los.change(
fn=los_nlos_classification,
inputs=[inference_output['output_emb'], inference_output['output_raw'], inference_output['labels'], percentage_dropdown_los],
outputs=[raw_img_los, embeddings_img_los, output_textbox]
)
# Launch the app
if __name__ == "__main__":
demo.launch()