Sadjad Alikhani
Update app.py
cacf045 verified
raw
history blame
8.07 kB
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
GENERATED_PATH = os.path.join("images", "generated")
# Specific values for percentage and complexity
percentage_values = [10, 30, 50, 70, 100]
complexity_values = [16, 32]
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx, complexity_idx):
# Map the slider index to the actual value
percentage = percentage_values[percentage_idx]
complexity = complexity_values[complexity_idx]
# Generate the paths to the images
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
# Load images using PIL
raw_image = Image.open(raw_image_path)
embeddings_image = Image.open(embeddings_image_path)
# Return the loaded images
return raw_image, embeddings_image
import torch
import subprocess
# Function to load the pre-trained model from your cloned repository
def load_custom_model():
# Assume your model is in the cloned LWM repository
from lwm_model import LWM # Assuming the model is defined in lwm_model.py
model = LWM() # Modify this according to your model initialization
model.eval() # Set the model to evaluation mode
return model
# Function to process the uploaded .p file and perform inference using the custom model
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
try:
# Clone the repository if not already done (for model and tokenizer)
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
model_repo_dir = "./LWM"
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Change the working directory to the cloned LWM folder
if os.path.exists(model_repo_dir):
os.chdir(model_repo_dir)
print(f"Changed working directory to {os.getcwd()}")
else:
return f"Directory {model_repo_dir} does not exist."
# Step 1: Load the custom model
from lwm_model import LWM
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = LWM.from_pretrained(device=device)
# Step 2: Import the tokenizer
from input_preprocess import tokenizer
# Step 3: Load the uploaded .p file that contains the wireless channel matrix
with open(uploaded_file.name, 'rb') as f:
manual_data = pickle.load(f)
# Step 4: Tokenize the data if needed (or perform any necessary preprocessing)
preprocessed_chs = tokenizer(manual_data=manual_data)
# Step 5: Perform inference on the channel matrix using the model
from inference import lwm_inference, create_raw_dataset
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
output_raw = create_raw_dataset(preprocessed_chs, device)
print(output_emb.shape)
print(output_raw.shape)
return output_emb, output_raw
except Exception as e:
return str(e), str(e)
# Function to handle logic based on whether a file is uploaded or not
def los_nlos_classification(file, percentage_idx, complexity_idx):
if file is not None:
# Process the uploaded .p file and generate new images
return process_p_file(file, percentage_idx, complexity_idx)
else:
# Display predefined images if no file is uploaded
return display_predefined_images(percentage_idx, complexity_idx)
# Define the Gradio interface
with gr.Blocks(css="""
.vertical-slider input[type=range] {
writing-mode: bt-lr; /* IE */
-webkit-appearance: slider-vertical; /* WebKit */
width: 8px;
height: 200px;
}
.slider-container {
display: inline-block;
margin-right: 50px;
text-align: center;
}
""") as demo:
# Contact Section
gr.Markdown(
"""
## Contact
<div style="display: flex; align-items: center;">
<a target="_blank" href="https://www.wi-lab.net"><img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"></a>&nbsp;&nbsp;
<a target="_blank" href="mailto:alikhani@asu.edu"><img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail " alt="Email"></a>&nbsp;&nbsp;
</div>
"""
)
# Tabs for Beam Prediction and LoS/NLoS Classification
with gr.Tab("Beam Prediction Task"):
gr.Markdown("### Beam Prediction Task")
# Sliders for percentage and complexity
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
with gr.Column(elem_id="slider-container"):
gr.Markdown("Task Complexity")
complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
# Image outputs (display the images side by side and set a smaller size for the images)
with gr.Row():
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
# Instant image updates when sliders change
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
# File uploader for uploading .p file
file_input = gr.File(label="Upload .p File", file_types=[".p"])
# Sliders for percentage and complexity
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
with gr.Column(elem_id="slider-container"):
gr.Markdown("Task Complexity")
complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
# Image outputs (display the images side by side and set a smaller size for the images)
with gr.Row():
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
# Instant image updates based on file upload or slider changes
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
# Launch the app
if __name__ == "__main__":
demo.launch()