Sadjad Alikhani
Update app.py
bc8a6bd verified
raw
history blame
9.36 kB
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
# Specific values for percentage of data for training
percentage_values = [10, 30, 50, 70, 100]
# Custom class to capture print output
class PrintCapture(io.StringIO):
def __init__(self):
super().__init__()
self.output = []
def write(self, txt):
self.output.append(txt)
super().write(txt)
def get_output(self):
return ''.join(self.output)
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx):
percentage = percentage_values[percentage_idx]
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png") # Assume complexity 16 for simplicity
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
raw_image = Image.open(raw_image_path)
embeddings_image = Image.open(embeddings_image_path)
return raw_image, embeddings_image
# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
random_image = np.random.rand(*size, 3) * 255
return Image.fromarray(random_image.astype('uint8'))
# Function to dynamically load a Python module from a given file path
def load_module_from_path(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
# Function to split dataset into training and test sets based on user selection
def split_dataset(channels, labels, percentage_idx):
percentage = percentage_values[percentage_idx] / 100
num_samples = channels.shape[0]
train_size = int(num_samples * percentage)
indices = np.arange(num_samples)
np.random.shuffle(indices)
train_idx, test_idx = indices[:train_size], indices[train_size:]
train_data, test_data = channels[train_idx], channels[test_idx]
train_labels, test_labels = labels[train_idx], labels[test_idx]
return train_data, test_data, train_labels, test_labels
# Function to generate confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(4, 4))
plt.imshow(cm, cmap='Blues')
plt.title(title)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.colorbar()
plt.xticks([0, 1], labels=[0, 1])
plt.yticks([0, 1], labels=[0, 1])
plt.tight_layout()
plt.savefig(f"{title}.png")
return Image.open(f"{title}.png")
def identical_train_test_split(output_emb, output_raw, labels, percentage):
N = output_emb.shape[0]
indices = torch.randperm(N)
split_index = int(N * percentage)
train_indices = indices[:split_index]
test_indices = indices[split_index:]
train_emb = output_emb[train_indices]
test_emb = output_emb[test_indices]
train_raw = output_raw[train_indices]
test_raw = output_raw[test_indices]
train_labels = labels[train_indices]
test_labels = labels[test_indices]
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels
# Function to classify test data based on distance to class centroids
def classify_based_on_distance(train_data, train_labels, test_data):
centroid_0 = train_data[train_labels == 0].mean(dim=0)
centroid_1 = train_data[train_labels == 1].mean(dim=0)
predictions = []
for test_point in test_data:
dist_0 = torch.norm(test_point - centroid_0)
dist_1 = torch.norm(test_point - centroid_1)
predictions.append(0 if dist_0 < dist_1 else 1)
return torch.tensor(predictions)
# Store the original working directory when the app starts
original_dir = os.getcwd()
def process_hdf5_file(uploaded_file, percentage_idx):
capture = PrintCapture()
sys.stdout = capture
try:
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
model_repo_dir = "./LWM"
if not os.path.exists(model_repo_dir):
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
repo_work_dir = os.path.join(original_dir, model_repo_dir)
if os.path.exists(repo_work_dir):
os.chdir(repo_work_dir)
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
inference_path = os.path.join(os.getcwd(), 'inference.py')
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
inference = load_module_from_path("inference", inference_path)
device = 'cpu'
model = lwm_model.LWM.from_pretrained(device=device)
with h5py.File(uploaded_file.name, 'r') as f:
channels = np.array(f['channels'])
labels = np.array(f['labels'])
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(
output_emb.view(len(output_emb),-1),
output_raw.view(len(output_raw),-1),
labels,
percentage_idx)
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
return raw_cm_image, emb_cm_image, capture.get_output()
except Exception as e:
return str(e), str(e), capture.get_output()
finally:
os.chdir(original_dir)
sys.stdout = sys.__stdout__
def los_nlos_classification(file, percentage_idx):
if file is not None:
return process_hdf5_file(file, percentage_idx)
else:
return display_predefined_images(percentage_idx), None
# Define the Gradio interface with a compact, minimal layout
with gr.Blocks(css="""
.slider-container {
text-align: center;
margin-bottom: 20px;
}
.image-row {
justify-content: center;
margin-top: 10px;
}
.output-box {
max-width: 600px;
margin: 0 auto;
}
""") as demo:
# Contact Section
gr.Markdown("""
<div style="text-align: center;">
<a target="_blank" href="https://www.wi-lab.net">
<img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;">
</a>
<a target="_blank" href="mailto:alikhani@asu.edu" style="margin-left: 10px;">
<img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail" alt="Email">
</a>
</div>
""")
# Tabs for Beam Prediction and LoS/NLoS Classification
with gr.Tab("Beam Prediction Task"):
gr.Markdown("### Beam Prediction Task")
with gr.Row():
with gr.Column(elem_id="slider-container"):
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, label="Training Data (%)")
with gr.Row(elem_id="image-row"):
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300)
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
with gr.Row():
with gr.Column(elem_id="slider-container"):
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, label="Training Data (%)")
with gr.Row(elem_id="image-row"):
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300)
output_textbox = gr.Textbox(label="Console Output", lines=8, elem_classes="output-box")
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
# Launch the app
if __name__ == "__main__":
demo.launch()