Spaces:
Running
Running
import gradio as gr | |
import os | |
from PIL import Image | |
import numpy as np | |
# Paths to the predefined images folder | |
RAW_PATH = os.path.join("images", "raw") | |
EMBEDDINGS_PATH = os.path.join("images", "embeddings") | |
GENERATED_PATH = os.path.join("images", "generated") | |
# Specific values for percentage and complexity | |
percentage_values = [10, 30, 50, 70, 100] | |
complexity_values = [16, 32] | |
# Function to load and display predefined images based on user selection | |
def display_predefined_images(percentage_idx, complexity_idx): | |
# Map the slider index to the actual value | |
percentage = percentage_values[percentage_idx] | |
complexity = complexity_values[complexity_idx] | |
# Generate the paths to the images | |
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png") | |
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png") | |
# Load images using PIL | |
raw_image = Image.open(raw_image_path) | |
embeddings_image = Image.open(embeddings_image_path) | |
# Return the loaded images | |
return raw_image, embeddings_image | |
import torch | |
from transformers import AutoModel # Assuming you use a transformer-like model in your LWM repo | |
import numpy as np | |
import importlib.util | |
# Function to load the pre-trained model from Hugging Face | |
def load_pretrained_model(): | |
# Load the pre-trained model from the Hugging Face repo | |
model = AutoModel.from_pretrained("sadjadalikhani/LWM") | |
model.eval() # Set model to evaluation mode | |
return model | |
# Function to process the uploaded .py file and perform inference using the model | |
def process_python_file(uploaded_file, percentage_idx, complexity_idx): | |
try: | |
# Step 1: Load the model | |
model = load_pretrained_model() | |
# Step 2: Load the uploaded .py file that contains the wireless channel matrix | |
# Import the Python file dynamically | |
spec = importlib.util.spec_from_file_location("uploaded_module", uploaded_file.name) | |
uploaded_module = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(uploaded_module) | |
# Assuming the uploaded file defines a variable called 'channel_matrix' | |
channel_matrix = uploaded_module.channel_matrix # This should be defined in the uploaded file | |
# Step 3: Perform inference on the channel matrix using the model | |
with torch.no_grad(): | |
input_tensor = torch.tensor(channel_matrix).unsqueeze(0) # Add batch dimension | |
output = model(input_tensor) # Perform inference | |
# Step 4: Generate new images based on the inference results | |
# You can modify this logic depending on how you want to visualize the results | |
generated_raw_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result | |
generated_embeddings_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result | |
# Save the generated images | |
generated_raw_image_path = os.path.join(GENERATED_PATH, f"generated_raw_{percentage_idx}_{complexity_idx}.png") | |
generated_embeddings_image_path = os.path.join(GENERATED_PATH, f"generated_embeddings_{percentage_idx}_{complexity_idx}.png") | |
Image.fromarray(generated_raw_img.astype(np.uint8)).save(generated_raw_image_path) | |
Image.fromarray(generated_embeddings_img.astype(np.uint8)).save(generated_embeddings_image_path) | |
# Load the generated images | |
raw_image = Image.open(generated_raw_image_path) | |
embeddings_image = Image.open(generated_embeddings_image_path) | |
return raw_image, embeddings_image | |
except Exception as e: | |
return str(e), str(e) | |
# Function to handle logic based on whether a file is uploaded or not | |
def los_nlos_classification(file, percentage_idx, complexity_idx): | |
if file is not None: | |
# Process the uploaded file and generate new images | |
return process_python_file(file, percentage_idx, complexity_idx) | |
else: | |
# Display predefined images if no file is uploaded | |
return display_predefined_images(percentage_idx, complexity_idx) | |
# Define the Gradio interface | |
with gr.Blocks(css=""" | |
.vertical-slider input[type=range] { | |
writing-mode: bt-lr; /* IE */ | |
-webkit-appearance: slider-vertical; /* WebKit */ | |
width: 8px; | |
height: 200px; | |
} | |
.slider-container { | |
display: inline-block; | |
margin-right: 50px; | |
text-align: center; | |
} | |
""") as demo: | |
# Contact Section | |
gr.Markdown( | |
""" | |
## Contact | |
<div style="display: flex; align-items: center;"> | |
<a target="_blank" href="mailto:info@wirelessmodel.com"><img src="https://img.shields.io/badge/email-info@wirelessmodel.com-blue.svg?logo=gmail " alt="Email"></a> | |
<a target="_blank" href="https://telegram.me/wirelessmodel"><img src="https://img.shields.io/badge/telegram-@wirelessmodel-blue.svg?logo=telegram " alt="Telegram"></a> | |
</div> | |
""" | |
) | |
# Tabs for Beam Prediction and LoS/NLoS Classification | |
with gr.Tab("Beam Prediction Task"): | |
gr.Markdown("### Beam Prediction Task") | |
# Sliders for percentage and complexity | |
with gr.Row(): | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Percentage of Data for Training") | |
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Task Complexity") | |
complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
# Image outputs (display the images side by side and set a smaller size for the images) | |
with gr.Row(): | |
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) | |
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) | |
# Instant image updates when sliders change | |
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) | |
complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) | |
with gr.Tab("LoS/NLoS Classification Task"): | |
gr.Markdown("### LoS/NLoS Classification Task") | |
# File uploader for uploading .py file | |
file_input = gr.File(label="Upload .py File", file_types=[".py"]) | |
# Sliders for percentage and complexity | |
with gr.Row(): | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Percentage of Data for Training") | |
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
with gr.Column(elem_id="slider-container"): | |
gr.Markdown("Task Complexity") | |
complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") | |
# Image outputs (display the images side by side and set a smaller size for the images) | |
with gr.Row(): | |
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) | |
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) | |
# Instant image updates based on file upload or slider changes | |
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) | |
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) | |
complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |