|
import asyncio |
|
import logging |
|
import queue |
|
import threading |
|
import urllib.request |
|
from pathlib import Path |
|
from typing import List, NamedTuple, Optional |
|
|
|
import av |
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pydub |
|
import streamlit as st |
|
from aiortc.contrib.media import MediaPlayer |
|
|
|
from streamlit_webrtc import ( |
|
RTCConfiguration, |
|
WebRtcMode, |
|
WebRtcStreamerContext, |
|
webrtc_streamer, |
|
) |
|
from streamlit_webrtc.session_info import get_session_id |
|
|
|
HERE = Path(__file__).parent |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def download_file(url, download_to: Path, expected_size=None): |
|
|
|
|
|
if download_to.exists(): |
|
if expected_size: |
|
if download_to.stat().st_size == expected_size: |
|
return |
|
else: |
|
st.info(f"{url} is already downloaded.") |
|
if not st.button("Download again?"): |
|
return |
|
|
|
download_to.parent.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
weights_warning, progress_bar = None, None |
|
try: |
|
weights_warning = st.warning("Downloading %s..." % url) |
|
progress_bar = st.progress(0) |
|
with open(download_to, "wb") as output_file: |
|
with urllib.request.urlopen(url) as response: |
|
length = int(response.info()["Content-Length"]) |
|
counter = 0.0 |
|
MEGABYTES = 2.0 ** 20.0 |
|
while True: |
|
data = response.read(8192) |
|
if not data: |
|
break |
|
counter += len(data) |
|
output_file.write(data) |
|
|
|
|
|
weights_warning.warning( |
|
"Downloading %s... (%6.2f/%6.2f MB)" |
|
% (url, counter / MEGABYTES, length / MEGABYTES) |
|
) |
|
progress_bar.progress(min(counter / length, 1.0)) |
|
|
|
finally: |
|
if weights_warning is not None: |
|
weights_warning.empty() |
|
if progress_bar is not None: |
|
progress_bar.empty() |
|
|
|
|
|
RTC_CONFIGURATION = RTCConfiguration( |
|
{"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]} |
|
) |
|
|
|
|
|
def main(): |
|
st.header("WebRTC demo") |
|
|
|
pages = { |
|
"Real time object detection (sendrecv)": app_object_detection, |
|
"Real time video transform with simple OpenCV filters (sendrecv)": app_video_filters, |
|
"Real time audio filter (sendrecv)": app_audio_filter, |
|
"Delayed echo (sendrecv)": app_delayed_echo, |
|
"Consuming media files on server-side and streaming it to browser (recvonly)": app_streaming, |
|
"WebRTC is sendonly and images are shown via st.image() (sendonly)": app_sendonly_video, |
|
"WebRTC is sendonly and audio frames are visualized with matplotlib (sendonly)": app_sendonly_audio, |
|
"Simple video and audio loopback (sendrecv)": app_loopback, |
|
"Configure media constraints and HTML element styles with loopback (sendrecv)": app_media_constraints, |
|
"Control the playing state programatically": app_programatically_play, |
|
"Customize UI texts": app_customize_ui_texts, |
|
} |
|
page_titles = pages.keys() |
|
|
|
page_title = st.sidebar.selectbox( |
|
"Choose the app mode", |
|
page_titles, |
|
) |
|
st.subheader(page_title) |
|
|
|
page_func = pages[page_title] |
|
page_func() |
|
|
|
st.sidebar.markdown( |
|
""" |
|
--- |
|
<a href="https://www.buymeacoffee.com/whitphx" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" width="180" height="50" ></a> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
logger.debug("=== Alive threads ===") |
|
for thread in threading.enumerate(): |
|
if thread.is_alive(): |
|
logger.debug(f" {thread.name} ({thread.ident})") |
|
|
|
|
|
def app_loopback(): |
|
"""Simple video loopback""" |
|
webrtc_streamer(key="loopback") |
|
|
|
|
|
def app_video_filters(): |
|
"""Video transforms with OpenCV""" |
|
|
|
_type = st.radio("Select transform type", ("noop", "cartoon", "edges", "rotate")) |
|
|
|
def callback(frame: av.VideoFrame) -> av.VideoFrame: |
|
img = frame.to_ndarray(format="bgr24") |
|
|
|
if _type == "noop": |
|
pass |
|
elif _type == "cartoon": |
|
|
|
img_color = cv2.pyrDown(cv2.pyrDown(img)) |
|
for _ in range(6): |
|
img_color = cv2.bilateralFilter(img_color, 9, 9, 7) |
|
img_color = cv2.pyrUp(cv2.pyrUp(img_color)) |
|
|
|
|
|
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) |
|
img_edges = cv2.adaptiveThreshold( |
|
cv2.medianBlur(img_edges, 7), |
|
255, |
|
cv2.ADAPTIVE_THRESH_MEAN_C, |
|
cv2.THRESH_BINARY, |
|
9, |
|
2, |
|
) |
|
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) |
|
|
|
|
|
img = cv2.bitwise_and(img_color, img_edges) |
|
elif _type == "edges": |
|
|
|
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR) |
|
elif _type == "rotate": |
|
|
|
rows, cols, _ = img.shape |
|
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1) |
|
img = cv2.warpAffine(img, M, (cols, rows)) |
|
|
|
return av.VideoFrame.from_ndarray(img, format="bgr24") |
|
|
|
webrtc_streamer( |
|
key="opencv-filter", |
|
mode=WebRtcMode.SENDRECV, |
|
rtc_configuration=RTC_CONFIGURATION, |
|
video_frame_callback=callback, |
|
media_stream_constraints={"video": True, "audio": False}, |
|
async_processing=True, |
|
) |
|
|
|
st.markdown( |
|
"This demo is based on " |
|
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " |
|
"Many thanks to the project." |
|
) |
|
|
|
|
|
def app_audio_filter(): |
|
gain = st.slider("Gain", -10.0, +20.0, 1.0, 0.05) |
|
|
|
def process_audio(frame: av.AudioFrame) -> av.AudioFrame: |
|
raw_samples = frame.to_ndarray() |
|
sound = pydub.AudioSegment( |
|
data=raw_samples.tobytes(), |
|
sample_width=frame.format.bytes, |
|
frame_rate=frame.sample_rate, |
|
channels=len(frame.layout.channels), |
|
) |
|
|
|
sound = sound.apply_gain(gain) |
|
|
|
|
|
channel_sounds = sound.split_to_mono() |
|
channel_samples = [s.get_array_of_samples() for s in channel_sounds] |
|
new_samples: np.ndarray = np.array(channel_samples).T |
|
new_samples = new_samples.reshape(raw_samples.shape) |
|
|
|
new_frame = av.AudioFrame.from_ndarray(new_samples, layout=frame.layout.name) |
|
new_frame.sample_rate = frame.sample_rate |
|
return new_frame |
|
|
|
webrtc_streamer( |
|
key="audio-filter", |
|
mode=WebRtcMode.SENDRECV, |
|
rtc_configuration=RTC_CONFIGURATION, |
|
audio_frame_callback=process_audio, |
|
async_processing=True, |
|
) |
|
|
|
|
|
def app_delayed_echo(): |
|
delay = st.slider("Delay", 0.0, 5.0, 1.0, 0.05) |
|
|
|
async def queued_video_frames_callback( |
|
frames: List[av.VideoFrame], |
|
) -> List[av.VideoFrame]: |
|
logger.debug("Delay: %f", delay) |
|
|
|
|
|
|
|
|
|
_ = await asyncio.sleep(delay) |
|
return frames |
|
|
|
async def queued_audio_frames_callback( |
|
frames: List[av.AudioFrame], |
|
) -> List[av.AudioFrame]: |
|
_ = await asyncio.sleep(delay) |
|
return frames |
|
|
|
webrtc_streamer( |
|
key="delay", |
|
mode=WebRtcMode.SENDRECV, |
|
rtc_configuration=RTC_CONFIGURATION, |
|
queued_video_frames_callback=queued_video_frames_callback, |
|
queued_audio_frames_callback=queued_audio_frames_callback, |
|
async_processing=True, |
|
) |
|
|
|
|
|
def app_object_detection(): |
|
"""Object detection demo with MobileNet SSD. |
|
This model and code are based on |
|
https://github.com/robmarkcole/object-detection-app |
|
""" |
|
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" |
|
MODEL_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.caffemodel" |
|
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" |
|
PROTOTXT_LOCAL_PATH = HERE / "./models/MobileNetSSD_deploy.prototxt.txt" |
|
|
|
CLASSES = [ |
|
"background", |
|
"aeroplane", |
|
"bicycle", |
|
"bird", |
|
"boat", |
|
"bottle", |
|
"bus", |
|
"car", |
|
"cat", |
|
"chair", |
|
"cow", |
|
"diningtable", |
|
"dog", |
|
"horse", |
|
"motorbike", |
|
"person", |
|
"pottedplant", |
|
"sheep", |
|
"sofa", |
|
"train", |
|
"tvmonitor", |
|
] |
|
|
|
@st.experimental_singleton |
|
def generate_label_colors(): |
|
return np.random.uniform(0, 255, size=(len(CLASSES), 3)) |
|
|
|
COLORS = generate_label_colors() |
|
|
|
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564) |
|
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353) |
|
|
|
DEFAULT_CONFIDENCE_THRESHOLD = 0.5 |
|
|
|
class Detection(NamedTuple): |
|
name: str |
|
prob: float |
|
|
|
@st.cache |
|
def get_model( |
|
session_id, |
|
): |
|
return cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH)) |
|
|
|
net = get_model(get_session_id()) |
|
|
|
confidence_threshold = st.slider( |
|
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05 |
|
) |
|
|
|
def _annotate_image(image, detections): |
|
|
|
(h, w) = image.shape[:2] |
|
result: List[Detection] = [] |
|
for i in np.arange(0, detections.shape[2]): |
|
confidence = detections[0, 0, i, 2] |
|
|
|
if confidence > confidence_threshold: |
|
|
|
|
|
|
|
idx = int(detections[0, 0, i, 1]) |
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) |
|
(startX, startY, endX, endY) = box.astype("int") |
|
|
|
name = CLASSES[idx] |
|
result.append(Detection(name=name, prob=float(confidence))) |
|
|
|
|
|
label = f"{name}: {round(confidence * 100, 2)}%" |
|
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2) |
|
y = startY - 15 if startY - 15 > 15 else startY + 15 |
|
cv2.putText( |
|
image, |
|
label, |
|
(startX, y), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
0.5, |
|
COLORS[idx], |
|
2, |
|
) |
|
return image, result |
|
|
|
result_queue = ( |
|
queue.Queue() |
|
) |
|
|
|
def callback(frame: av.VideoFrame) -> av.VideoFrame: |
|
image = frame.to_ndarray(format="bgr24") |
|
blob = cv2.dnn.blobFromImage( |
|
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5 |
|
) |
|
net.setInput(blob) |
|
detections = net.forward() |
|
annotated_image, result = _annotate_image(image, detections) |
|
|
|
|
|
|
|
result_queue.put(result) |
|
|
|
return av.VideoFrame.from_ndarray(annotated_image, format="bgr24") |
|
|
|
webrtc_ctx = webrtc_streamer( |
|
key="object-detection", |
|
mode=WebRtcMode.SENDRECV, |
|
rtc_configuration=RTC_CONFIGURATION, |
|
video_frame_callback=callback, |
|
media_stream_constraints={"video": True, "audio": False}, |
|
async_processing=True, |
|
) |
|
|
|
if st.checkbox("Show the detected labels", value=True): |
|
if webrtc_ctx.state.playing: |
|
labels_placeholder = st.empty() |
|
|
|
|
|
|
|
|
|
|
|
while True: |
|
try: |
|
result = result_queue.get(timeout=1.0) |
|
except queue.Empty: |
|
result = None |
|
labels_placeholder.table(result) |
|
|
|
st.markdown( |
|
"This demo uses a model and code from " |
|
"https://github.com/robmarkcole/object-detection-app. " |
|
"Many thanks to the project." |
|
) |
|
|
|
|
|
def app_streaming(): |
|
"""Media streamings""" |
|
MEDIAFILES = { |
|
"big_buck_bunny_720p_2mb.mp4 (local)": { |
|
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_2mb.mp4", |
|
"local_file_path": HERE / "data/big_buck_bunny_720p_2mb.mp4", |
|
"type": "video", |
|
}, |
|
"big_buck_bunny_720p_10mb.mp4 (local)": { |
|
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_10mb.mp4", |
|
"local_file_path": HERE / "data/big_buck_bunny_720p_10mb.mp4", |
|
"type": "video", |
|
}, |
|
"file_example_MP3_700KB.mp3 (local)": { |
|
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_700KB.mp3", |
|
"local_file_path": HERE / "data/file_example_MP3_700KB.mp3", |
|
"type": "audio", |
|
}, |
|
"file_example_MP3_5MG.mp3 (local)": { |
|
"url": "https://file-examples-com.github.io/uploads/2017/11/file_example_MP3_5MG.mp3", |
|
"local_file_path": HERE / "data/file_example_MP3_5MG.mp3", |
|
"type": "audio", |
|
}, |
|
"rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov": { |
|
"url": "rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov", |
|
"type": "video", |
|
}, |
|
} |
|
media_file_label = st.radio( |
|
"Select a media source to stream", tuple(MEDIAFILES.keys()) |
|
) |
|
media_file_info = MEDIAFILES[media_file_label] |
|
if "local_file_path" in media_file_info: |
|
download_file(media_file_info["url"], media_file_info["local_file_path"]) |
|
|
|
def create_player(): |
|
if "local_file_path" in media_file_info: |
|
return MediaPlayer(str(media_file_info["local_file_path"])) |
|
else: |
|
return MediaPlayer(media_file_info["url"]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
key = f"media-streaming-{media_file_label}" |
|
ctx: Optional[WebRtcStreamerContext] = st.session_state.get(key) |
|
if media_file_info["type"] == "video" and ctx and ctx.state.playing: |
|
_type = st.radio( |
|
"Select transform type", ("noop", "cartoon", "edges", "rotate") |
|
) |
|
else: |
|
_type = "noop" |
|
|
|
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame: |
|
img = frame.to_ndarray(format="bgr24") |
|
|
|
if _type == "noop": |
|
pass |
|
elif _type == "cartoon": |
|
|
|
img_color = cv2.pyrDown(cv2.pyrDown(img)) |
|
for _ in range(6): |
|
img_color = cv2.bilateralFilter(img_color, 9, 9, 7) |
|
img_color = cv2.pyrUp(cv2.pyrUp(img_color)) |
|
|
|
|
|
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) |
|
img_edges = cv2.adaptiveThreshold( |
|
cv2.medianBlur(img_edges, 7), |
|
255, |
|
cv2.ADAPTIVE_THRESH_MEAN_C, |
|
cv2.THRESH_BINARY, |
|
9, |
|
2, |
|
) |
|
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) |
|
|
|
|
|
img = cv2.bitwise_and(img_color, img_edges) |
|
elif _type == "edges": |
|
|
|
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR) |
|
elif _type == "rotate": |
|
|
|
rows, cols, _ = img.shape |
|
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1) |
|
img = cv2.warpAffine(img, M, (cols, rows)) |
|
|
|
return av.VideoFrame.from_ndarray(img, format="bgr24") |
|
|
|
webrtc_streamer( |
|
key=key, |
|
mode=WebRtcMode.RECVONLY, |
|
rtc_configuration=RTC_CONFIGURATION, |
|
media_stream_constraints={ |
|
"video": media_file_info["type"] == "video", |
|
"audio": media_file_info["type"] == "audio", |
|
}, |
|
player_factory=create_player, |
|
video_frame_callback=video_frame_callback, |
|
) |
|
|
|
st.markdown( |
|
"The video filter in this demo is based on " |
|
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " |
|
"Many thanks to the project." |
|
) |
|
|
|
|
|
def app_sendonly_video(): |
|
"""A sample to use WebRTC in sendonly mode to transfer frames |
|
from the browser to the server and to render frames via `st.image`.""" |
|
webrtc_ctx = webrtc_streamer( |
|
key="video-sendonly", |
|
mode=WebRtcMode.SENDONLY, |
|
rtc_configuration=RTC_CONFIGURATION, |
|
media_stream_constraints={"video": True}, |
|
) |
|
|
|
image_place = st.empty() |
|
|
|
while True: |
|
if webrtc_ctx.video_receiver: |
|
try: |
|
video_frame = webrtc_ctx.video_receiver.get_frame(timeout=1) |
|
except queue.Empty: |
|
logger.warning("Queue is empty. Abort.") |
|
break |
|
|
|
img_rgb = video_frame.to_ndarray(format="rgb24") |
|
image_place.image(img_rgb) |
|
else: |
|
logger.warning("AudioReciver is not set. Abort.") |
|
break |
|
|
|
|
|
def app_sendonly_audio(): |
|
"""A sample to use WebRTC in sendonly mode to transfer audio frames |
|
from the browser to the server and visualize them with matplotlib |
|
and `st.pyplot`.""" |
|
webrtc_ctx = webrtc_streamer( |
|
key="sendonly-audio", |
|
mode=WebRtcMode.SENDONLY, |
|
audio_receiver_size=256, |
|
rtc_configuration=RTC_CONFIGURATION, |
|
media_stream_constraints={"audio": True}, |
|
) |
|
|
|
fig_place = st.empty() |
|
|
|
fig, [ax_time, ax_freq] = plt.subplots( |
|
2, 1, gridspec_kw={"top": 1.5, "bottom": 0.2} |
|
) |
|
|
|
sound_window_len = 5000 |
|
sound_window_buffer = None |
|
while True: |
|
if webrtc_ctx.audio_receiver: |
|
try: |
|
audio_frames = webrtc_ctx.audio_receiver.get_frames(timeout=1) |
|
except queue.Empty: |
|
logger.warning("Queue is empty. Abort.") |
|
break |
|
|
|
sound_chunk = pydub.AudioSegment.empty() |
|
for audio_frame in audio_frames: |
|
sound = pydub.AudioSegment( |
|
data=audio_frame.to_ndarray().tobytes(), |
|
sample_width=audio_frame.format.bytes, |
|
frame_rate=audio_frame.sample_rate, |
|
channels=len(audio_frame.layout.channels), |
|
) |
|
sound_chunk += sound |
|
|
|
if len(sound_chunk) > 0: |
|
if sound_window_buffer is None: |
|
sound_window_buffer = pydub.AudioSegment.silent( |
|
duration=sound_window_len |
|
) |
|
|
|
sound_window_buffer += sound_chunk |
|
if len(sound_window_buffer) > sound_window_len: |
|
sound_window_buffer = sound_window_buffer[-sound_window_len:] |
|
|
|
if sound_window_buffer: |
|
|
|
sound_window_buffer = sound_window_buffer.set_channels( |
|
1 |
|
) |
|
sample = np.array(sound_window_buffer.get_array_of_samples()) |
|
|
|
ax_time.cla() |
|
times = (np.arange(-len(sample), 0)) / sound_window_buffer.frame_rate |
|
ax_time.plot(times, sample) |
|
ax_time.set_xlabel("Time") |
|
ax_time.set_ylabel("Magnitude") |
|
|
|
spec = np.fft.fft(sample) |
|
freq = np.fft.fftfreq(sample.shape[0], 1.0 / sound_chunk.frame_rate) |
|
freq = freq[: int(freq.shape[0] / 2)] |
|
spec = spec[: int(spec.shape[0] / 2)] |
|
spec[0] = spec[0] / 2 |
|
|
|
ax_freq.cla() |
|
ax_freq.plot(freq, np.abs(spec)) |
|
ax_freq.set_xlabel("Frequency") |
|
ax_freq.set_yscale("log") |
|
ax_freq.set_ylabel("Magnitude") |
|
|
|
fig_place.pyplot(fig) |
|
else: |
|
logger.warning("AudioReciver is not set. Abort.") |
|
break |
|
|
|
|
|
def app_media_constraints(): |
|
"""A sample to configure MediaStreamConstraints object""" |
|
frame_rate = 5 |
|
webrtc_streamer( |
|
key="media-constraints", |
|
mode=WebRtcMode.SENDRECV, |
|
rtc_configuration=RTC_CONFIGURATION, |
|
media_stream_constraints={ |
|
"video": {"frameRate": {"ideal": frame_rate}}, |
|
}, |
|
video_html_attrs={ |
|
"style": {"width": "50%", "margin": "0 auto", "border": "5px yellow solid"}, |
|
"controls": False, |
|
"autoPlay": True, |
|
}, |
|
) |
|
st.write(f"The frame rate is set as {frame_rate}. Video style is changed.") |
|
|
|
|
|
def app_programatically_play(): |
|
"""A sample of controlling the playing state from Python.""" |
|
playing = st.checkbox("Playing", value=True) |
|
|
|
webrtc_streamer( |
|
key="programatic_control", |
|
desired_playing_state=playing, |
|
mode=WebRtcMode.SENDRECV, |
|
rtc_configuration=RTC_CONFIGURATION, |
|
) |
|
|
|
|
|
def app_customize_ui_texts(): |
|
webrtc_streamer( |
|
key="custom_ui_texts", |
|
rtc_configuration=RTC_CONFIGURATION, |
|
translations={ |
|
"start": "開始", |
|
"stop": "停止", |
|
"select_device": "デバイス選択", |
|
"media_api_not_available": "Media APIが利用できない環境です", |
|
"device_ask_permission": "メディアデバイスへのアクセスを許可してください", |
|
"device_not_available": "メディアデバイスを利用できません", |
|
"device_access_denied": "メディアデバイスへのアクセスが拒否されました", |
|
}, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
import os |
|
|
|
DEBUG = os.environ.get("DEBUG", "false").lower() not in ["false", "no", "0"] |
|
|
|
logging.basicConfig( |
|
format="[%(asctime)s] %(levelname)7s from %(name)s in %(pathname)s:%(lineno)d: " |
|
"%(message)s", |
|
force=True, |
|
) |
|
|
|
logger.setLevel(level=logging.DEBUG if DEBUG else logging.INFO) |
|
|
|
st_webrtc_logger = logging.getLogger("streamlit_webrtc") |
|
st_webrtc_logger.setLevel(logging.DEBUG) |
|
|
|
fsevents_logger = logging.getLogger("fsevents") |
|
fsevents_logger.setLevel(logging.WARNING) |
|
|
|
main() |
|
|