Upgrade streamlit-webrtc to 0.40.0 and update app.py to use class-less callbacks
Browse files- app.py +244 -292
- requirements.txt +1 -1
app.py
CHANGED
@@ -4,12 +4,7 @@ import queue
|
|
4 |
import threading
|
5 |
import urllib.request
|
6 |
from pathlib import Path
|
7 |
-
from typing import List, NamedTuple
|
8 |
-
|
9 |
-
try:
|
10 |
-
from typing import Literal
|
11 |
-
except ImportError:
|
12 |
-
from typing_extensions import Literal # type: ignore
|
13 |
|
14 |
import av
|
15 |
import cv2
|
@@ -20,12 +15,12 @@ import streamlit as st
|
|
20 |
from aiortc.contrib.media import MediaPlayer
|
21 |
|
22 |
from streamlit_webrtc import (
|
23 |
-
AudioProcessorBase,
|
24 |
RTCConfiguration,
|
25 |
-
VideoProcessorBase,
|
26 |
WebRtcMode,
|
|
|
27 |
webrtc_streamer,
|
28 |
)
|
|
|
29 |
|
30 |
HERE = Path(__file__).parent
|
31 |
|
@@ -86,63 +81,29 @@ RTC_CONFIGURATION = RTCConfiguration(
|
|
86 |
def main():
|
87 |
st.header("WebRTC demo")
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
"Real time video transform with simple OpenCV filters (sendrecv)"
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
"
|
97 |
-
|
98 |
-
|
99 |
-
"
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
media_constraints_page = (
|
106 |
-
"Configure media constraints and HTML element styles with loopback (sendrecv)"
|
107 |
-
)
|
108 |
-
programatically_control_page = "Control the playing state programatically"
|
109 |
-
app_mode = st.sidebar.selectbox(
|
110 |
"Choose the app mode",
|
111 |
-
|
112 |
-
object_detection_page,
|
113 |
-
video_filters_page,
|
114 |
-
audio_filter_page,
|
115 |
-
delayed_echo_page,
|
116 |
-
streaming_page,
|
117 |
-
video_sendonly_page,
|
118 |
-
audio_sendonly_page,
|
119 |
-
loopback_page,
|
120 |
-
media_constraints_page,
|
121 |
-
programatically_control_page,
|
122 |
-
],
|
123 |
)
|
124 |
-
st.subheader(
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
elif app_mode == object_detection_page:
|
129 |
-
app_object_detection()
|
130 |
-
elif app_mode == audio_filter_page:
|
131 |
-
app_audio_filter()
|
132 |
-
elif app_mode == delayed_echo_page:
|
133 |
-
app_delayed_echo()
|
134 |
-
elif app_mode == streaming_page:
|
135 |
-
app_streaming()
|
136 |
-
elif app_mode == video_sendonly_page:
|
137 |
-
app_sendonly_video()
|
138 |
-
elif app_mode == audio_sendonly_page:
|
139 |
-
app_sendonly_audio()
|
140 |
-
elif app_mode == loopback_page:
|
141 |
-
app_loopback()
|
142 |
-
elif app_mode == media_constraints_page:
|
143 |
-
app_media_constraints()
|
144 |
-
elif app_mode == programatically_control_page:
|
145 |
-
app_programatically_play()
|
146 |
|
147 |
st.sidebar.markdown(
|
148 |
"""
|
@@ -159,70 +120,61 @@ def main():
|
|
159 |
|
160 |
|
161 |
def app_loopback():
|
162 |
-
"""
|
163 |
webrtc_streamer(key="loopback")
|
164 |
|
165 |
|
166 |
def app_video_filters():
|
167 |
-
"""
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
9,
|
195 |
-
2,
|
196 |
-
)
|
197 |
-
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
|
210 |
-
|
211 |
|
212 |
-
|
213 |
key="opencv-filter",
|
214 |
mode=WebRtcMode.SENDRECV,
|
215 |
rtc_configuration=RTC_CONFIGURATION,
|
216 |
-
|
217 |
media_stream_constraints={"video": True, "audio": False},
|
218 |
async_processing=True,
|
219 |
)
|
220 |
|
221 |
-
if webrtc_ctx.video_processor:
|
222 |
-
webrtc_ctx.video_processor.type = st.radio(
|
223 |
-
"Select transform type", ("noop", "cartoon", "edges", "rotate")
|
224 |
-
)
|
225 |
-
|
226 |
st.markdown(
|
227 |
"This demo is based on "
|
228 |
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501
|
@@ -231,80 +183,67 @@ def app_video_filters():
|
|
231 |
|
232 |
|
233 |
def app_audio_filter():
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
frame_rate=frame.sample_rate,
|
245 |
-
channels=len(frame.layout.channels),
|
246 |
-
)
|
247 |
|
248 |
-
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
new_frame.sample_rate = frame.sample_rate
|
260 |
-
return new_frame
|
261 |
|
262 |
-
|
263 |
key="audio-filter",
|
264 |
mode=WebRtcMode.SENDRECV,
|
265 |
rtc_configuration=RTC_CONFIGURATION,
|
266 |
-
|
267 |
async_processing=True,
|
268 |
)
|
269 |
|
270 |
-
if webrtc_ctx.audio_processor:
|
271 |
-
webrtc_ctx.audio_processor.gain = st.slider(
|
272 |
-
"Gain", -10.0, +20.0, DEFAULT_GAIN, 0.05
|
273 |
-
)
|
274 |
-
|
275 |
|
276 |
def app_delayed_echo():
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
-
|
283 |
-
logger.debug("Delay:", self.delay)
|
284 |
-
await asyncio.sleep(self.delay)
|
285 |
-
return frames
|
286 |
-
|
287 |
-
class AudioProcessor(AudioProcessorBase):
|
288 |
-
delay = DEFAULT_DELAY
|
289 |
-
|
290 |
-
async def recv_queued(self, frames: List[av.AudioFrame]) -> List[av.AudioFrame]:
|
291 |
-
await asyncio.sleep(self.delay)
|
292 |
-
return frames
|
293 |
-
|
294 |
-
webrtc_ctx = webrtc_streamer(
|
295 |
key="delay",
|
296 |
mode=WebRtcMode.SENDRECV,
|
297 |
rtc_configuration=RTC_CONFIGURATION,
|
298 |
-
|
299 |
-
|
300 |
async_processing=True,
|
301 |
)
|
302 |
|
303 |
-
if webrtc_ctx.video_processor and webrtc_ctx.audio_processor:
|
304 |
-
delay = st.slider("Delay", 0.0, 5.0, DEFAULT_DELAY, 0.05)
|
305 |
-
webrtc_ctx.video_processor.delay = delay
|
306 |
-
webrtc_ctx.audio_processor.delay = delay
|
307 |
-
|
308 |
|
309 |
def app_object_detection():
|
310 |
"""Object detection demo with MobileNet SSD.
|
@@ -339,7 +278,12 @@ def app_object_detection():
|
|
339 |
"train",
|
340 |
"tvmonitor",
|
341 |
]
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
345 |
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
@@ -350,80 +294,79 @@ def app_object_detection():
|
|
350 |
name: str
|
351 |
prob: float
|
352 |
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
|
|
356 |
|
357 |
-
|
358 |
-
self._net = cv2.dnn.readNetFromCaffe(
|
359 |
-
str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH)
|
360 |
-
)
|
361 |
-
self.confidence_threshold = DEFAULT_CONFIDENCE_THRESHOLD
|
362 |
-
self.result_queue = queue.Queue()
|
363 |
-
|
364 |
-
def _annotate_image(self, image, detections):
|
365 |
-
# loop over the detections
|
366 |
-
(h, w) = image.shape[:2]
|
367 |
-
result: List[Detection] = []
|
368 |
-
for i in np.arange(0, detections.shape[2]):
|
369 |
-
confidence = detections[0, 0, i, 2]
|
370 |
-
|
371 |
-
if confidence > self.confidence_threshold:
|
372 |
-
# extract the index of the class label from the `detections`,
|
373 |
-
# then compute the (x, y)-coordinates of the bounding box for
|
374 |
-
# the object
|
375 |
-
idx = int(detections[0, 0, i, 1])
|
376 |
-
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
377 |
-
(startX, startY, endX, endY) = box.astype("int")
|
378 |
-
|
379 |
-
name = CLASSES[idx]
|
380 |
-
result.append(Detection(name=name, prob=float(confidence)))
|
381 |
-
|
382 |
-
# display the prediction
|
383 |
-
label = f"{name}: {round(confidence * 100, 2)}%"
|
384 |
-
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
|
385 |
-
y = startY - 15 if startY - 15 > 15 else startY + 15
|
386 |
-
cv2.putText(
|
387 |
-
image,
|
388 |
-
label,
|
389 |
-
(startX, y),
|
390 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
391 |
-
0.5,
|
392 |
-
COLORS[idx],
|
393 |
-
2,
|
394 |
-
)
|
395 |
-
return image, result
|
396 |
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
401 |
-
)
|
402 |
-
self._net.setInput(blob)
|
403 |
-
detections = self._net.forward()
|
404 |
-
annotated_image, result = self._annotate_image(image, detections)
|
405 |
|
406 |
-
|
407 |
-
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
webrtc_ctx = webrtc_streamer(
|
413 |
key="object-detection",
|
414 |
mode=WebRtcMode.SENDRECV,
|
415 |
rtc_configuration=RTC_CONFIGURATION,
|
416 |
-
|
417 |
media_stream_constraints={"video": True, "audio": False},
|
418 |
async_processing=True,
|
419 |
)
|
420 |
|
421 |
-
confidence_threshold = st.slider(
|
422 |
-
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05
|
423 |
-
)
|
424 |
-
if webrtc_ctx.video_processor:
|
425 |
-
webrtc_ctx.video_processor.confidence_threshold = confidence_threshold
|
426 |
-
|
427 |
if st.checkbox("Show the detected labels", value=True):
|
428 |
if webrtc_ctx.state.playing:
|
429 |
labels_placeholder = st.empty()
|
@@ -433,16 +376,11 @@ def app_object_detection():
|
|
433 |
# Then the rendered video frames and the labels displayed here
|
434 |
# are not strictly synchronized.
|
435 |
while True:
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
except queue.Empty:
|
442 |
-
result = None
|
443 |
-
labels_placeholder.table(result)
|
444 |
-
else:
|
445 |
-
break
|
446 |
|
447 |
st.markdown(
|
448 |
"This demo uses a model and code from "
|
@@ -452,7 +390,7 @@ def app_object_detection():
|
|
452 |
|
453 |
|
454 |
def app_streaming():
|
455 |
-
"""
|
456 |
MEDIAFILES = {
|
457 |
"big_buck_bunny_720p_2mb.mp4 (local)": {
|
458 |
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_2mb.mp4", # noqa: E501
|
@@ -499,51 +437,54 @@ def app_streaming():
|
|
499 |
# options={"framerate": "30", "video_size": "1280x720"},
|
500 |
# )
|
501 |
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
|
|
|
|
|
|
531 |
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
|
543 |
-
|
544 |
|
545 |
-
|
546 |
-
key=
|
547 |
mode=WebRtcMode.RECVONLY,
|
548 |
rtc_configuration=RTC_CONFIGURATION,
|
549 |
media_stream_constraints={
|
@@ -551,14 +492,9 @@ def app_streaming():
|
|
551 |
"audio": media_file_info["type"] == "audio",
|
552 |
},
|
553 |
player_factory=create_player,
|
554 |
-
|
555 |
)
|
556 |
|
557 |
-
if media_file_info["type"] == "video" and webrtc_ctx.video_processor:
|
558 |
-
webrtc_ctx.video_processor.type = st.radio(
|
559 |
-
"Select transform type", ("noop", "cartoon", "edges", "rotate")
|
560 |
-
)
|
561 |
-
|
562 |
st.markdown(
|
563 |
"The video filter in this demo is based on "
|
564 |
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501
|
@@ -673,7 +609,7 @@ def app_sendonly_audio():
|
|
673 |
|
674 |
|
675 |
def app_media_constraints():
|
676 |
-
"""
|
677 |
frame_rate = 5
|
678 |
webrtc_streamer(
|
679 |
key="media-constraints",
|
@@ -692,17 +628,33 @@ def app_media_constraints():
|
|
692 |
|
693 |
|
694 |
def app_programatically_play():
|
695 |
-
"""
|
696 |
playing = st.checkbox("Playing", value=True)
|
697 |
|
698 |
webrtc_streamer(
|
699 |
-
key="
|
700 |
desired_playing_state=playing,
|
701 |
mode=WebRtcMode.SENDRECV,
|
702 |
rtc_configuration=RTC_CONFIGURATION,
|
703 |
)
|
704 |
|
705 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
706 |
if __name__ == "__main__":
|
707 |
import os
|
708 |
|
|
|
4 |
import threading
|
5 |
import urllib.request
|
6 |
from pathlib import Path
|
7 |
+
from typing import List, NamedTuple, Optional
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
import av
|
10 |
import cv2
|
|
|
15 |
from aiortc.contrib.media import MediaPlayer
|
16 |
|
17 |
from streamlit_webrtc import (
|
|
|
18 |
RTCConfiguration,
|
|
|
19 |
WebRtcMode,
|
20 |
+
WebRtcStreamerContext,
|
21 |
webrtc_streamer,
|
22 |
)
|
23 |
+
from streamlit_webrtc.session_info import get_session_id
|
24 |
|
25 |
HERE = Path(__file__).parent
|
26 |
|
|
|
81 |
def main():
|
82 |
st.header("WebRTC demo")
|
83 |
|
84 |
+
pages = {
|
85 |
+
"Real time object detection (sendrecv)": app_object_detection,
|
86 |
+
"Real time video transform with simple OpenCV filters (sendrecv)": app_video_filters, # noqa: E501
|
87 |
+
"Real time audio filter (sendrecv)": app_audio_filter,
|
88 |
+
"Delayed echo (sendrecv)": app_delayed_echo,
|
89 |
+
"Consuming media files on server-side and streaming it to browser (recvonly)": app_streaming, # noqa: E501
|
90 |
+
"WebRTC is sendonly and images are shown via st.image() (sendonly)": app_sendonly_video, # noqa: E501
|
91 |
+
"WebRTC is sendonly and audio frames are visualized with matplotlib (sendonly)": app_sendonly_audio, # noqa: E501
|
92 |
+
"Simple video and audio loopback (sendrecv)": app_loopback,
|
93 |
+
"Configure media constraints and HTML element styles with loopback (sendrecv)": app_media_constraints, # noqa: E501
|
94 |
+
"Control the playing state programatically": app_programatically_play,
|
95 |
+
"Customize UI texts": app_customize_ui_texts,
|
96 |
+
}
|
97 |
+
page_titles = pages.keys()
|
98 |
+
|
99 |
+
page_title = st.sidebar.selectbox(
|
|
|
|
|
|
|
|
|
|
|
100 |
"Choose the app mode",
|
101 |
+
page_titles,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
)
|
103 |
+
st.subheader(page_title)
|
104 |
+
|
105 |
+
page_func = pages[page_title]
|
106 |
+
page_func()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
st.sidebar.markdown(
|
109 |
"""
|
|
|
120 |
|
121 |
|
122 |
def app_loopback():
|
123 |
+
"""Simple video loopback"""
|
124 |
webrtc_streamer(key="loopback")
|
125 |
|
126 |
|
127 |
def app_video_filters():
|
128 |
+
"""Video transforms with OpenCV"""
|
129 |
+
|
130 |
+
_type = st.radio("Select transform type", ("noop", "cartoon", "edges", "rotate"))
|
131 |
+
|
132 |
+
def callback(frame: av.VideoFrame) -> av.VideoFrame:
|
133 |
+
img = frame.to_ndarray(format="bgr24")
|
134 |
+
|
135 |
+
if _type == "noop":
|
136 |
+
pass
|
137 |
+
elif _type == "cartoon":
|
138 |
+
# prepare color
|
139 |
+
img_color = cv2.pyrDown(cv2.pyrDown(img))
|
140 |
+
for _ in range(6):
|
141 |
+
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
|
142 |
+
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
|
143 |
+
|
144 |
+
# prepare edges
|
145 |
+
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
146 |
+
img_edges = cv2.adaptiveThreshold(
|
147 |
+
cv2.medianBlur(img_edges, 7),
|
148 |
+
255,
|
149 |
+
cv2.ADAPTIVE_THRESH_MEAN_C,
|
150 |
+
cv2.THRESH_BINARY,
|
151 |
+
9,
|
152 |
+
2,
|
153 |
+
)
|
154 |
+
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
# combine color and edges
|
157 |
+
img = cv2.bitwise_and(img_color, img_edges)
|
158 |
+
elif _type == "edges":
|
159 |
+
# perform edge detection
|
160 |
+
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
|
161 |
+
elif _type == "rotate":
|
162 |
+
# rotate image
|
163 |
+
rows, cols, _ = img.shape
|
164 |
+
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
|
165 |
+
img = cv2.warpAffine(img, M, (cols, rows))
|
166 |
|
167 |
+
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
168 |
|
169 |
+
webrtc_streamer(
|
170 |
key="opencv-filter",
|
171 |
mode=WebRtcMode.SENDRECV,
|
172 |
rtc_configuration=RTC_CONFIGURATION,
|
173 |
+
video_frame_callback=callback,
|
174 |
media_stream_constraints={"video": True, "audio": False},
|
175 |
async_processing=True,
|
176 |
)
|
177 |
|
|
|
|
|
|
|
|
|
|
|
178 |
st.markdown(
|
179 |
"This demo is based on "
|
180 |
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501
|
|
|
183 |
|
184 |
|
185 |
def app_audio_filter():
|
186 |
+
gain = st.slider("Gain", -10.0, +20.0, 1.0, 0.05)
|
187 |
+
|
188 |
+
def process_audio(frame: av.AudioFrame) -> av.AudioFrame:
|
189 |
+
raw_samples = frame.to_ndarray()
|
190 |
+
sound = pydub.AudioSegment(
|
191 |
+
data=raw_samples.tobytes(),
|
192 |
+
sample_width=frame.format.bytes,
|
193 |
+
frame_rate=frame.sample_rate,
|
194 |
+
channels=len(frame.layout.channels),
|
195 |
+
)
|
|
|
|
|
|
|
196 |
|
197 |
+
sound = sound.apply_gain(gain)
|
198 |
|
199 |
+
# Ref: https://github.com/jiaaro/pydub/blob/master/API.markdown#audiosegmentget_array_of_samples # noqa
|
200 |
+
channel_sounds = sound.split_to_mono()
|
201 |
+
channel_samples = [s.get_array_of_samples() for s in channel_sounds]
|
202 |
+
new_samples: np.ndarray = np.array(channel_samples).T
|
203 |
+
new_samples = new_samples.reshape(raw_samples.shape)
|
204 |
|
205 |
+
new_frame = av.AudioFrame.from_ndarray(new_samples, layout=frame.layout.name)
|
206 |
+
new_frame.sample_rate = frame.sample_rate
|
207 |
+
return new_frame
|
|
|
|
|
208 |
|
209 |
+
webrtc_streamer(
|
210 |
key="audio-filter",
|
211 |
mode=WebRtcMode.SENDRECV,
|
212 |
rtc_configuration=RTC_CONFIGURATION,
|
213 |
+
audio_frame_callback=process_audio,
|
214 |
async_processing=True,
|
215 |
)
|
216 |
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
def app_delayed_echo():
|
219 |
+
delay = st.slider("Delay", 0.0, 5.0, 1.0, 0.05)
|
220 |
+
|
221 |
+
async def queued_video_frames_callback(
|
222 |
+
frames: List[av.VideoFrame],
|
223 |
+
) -> List[av.VideoFrame]:
|
224 |
+
logger.debug("Delay: %f", delay)
|
225 |
+
# A standalone `await ...` is interpreted as an expression and
|
226 |
+
# the Streamlit magic's target, which leads implicit calls of `st.write`.
|
227 |
+
# To prevent it, fix it as `_ = await ...`, a statement.
|
228 |
+
# See https://discuss.streamlit.io/t/issue-with-asyncio-run-in-streamlit/7745/15
|
229 |
+
_ = await asyncio.sleep(delay)
|
230 |
+
return frames
|
231 |
+
|
232 |
+
async def queued_audio_frames_callback(
|
233 |
+
frames: List[av.AudioFrame],
|
234 |
+
) -> List[av.AudioFrame]:
|
235 |
+
_ = await asyncio.sleep(delay)
|
236 |
+
return frames
|
237 |
|
238 |
+
webrtc_streamer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
key="delay",
|
240 |
mode=WebRtcMode.SENDRECV,
|
241 |
rtc_configuration=RTC_CONFIGURATION,
|
242 |
+
queued_video_frames_callback=queued_video_frames_callback,
|
243 |
+
queued_audio_frames_callback=queued_audio_frames_callback,
|
244 |
async_processing=True,
|
245 |
)
|
246 |
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
def app_object_detection():
|
249 |
"""Object detection demo with MobileNet SSD.
|
|
|
278 |
"train",
|
279 |
"tvmonitor",
|
280 |
]
|
281 |
+
|
282 |
+
@st.experimental_singleton
|
283 |
+
def generate_label_colors():
|
284 |
+
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
285 |
+
|
286 |
+
COLORS = generate_label_colors()
|
287 |
|
288 |
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
289 |
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
|
|
294 |
name: str
|
295 |
prob: float
|
296 |
|
297 |
+
@st.cache
|
298 |
+
def get_model(
|
299 |
+
session_id,
|
300 |
+
): # HACK: Pass session_id as an arg to make the cache session-specific
|
301 |
+
return cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
302 |
|
303 |
+
net = get_model(get_session_id())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
+
confidence_threshold = st.slider(
|
306 |
+
"Confidence threshold", 0.0, 1.0, DEFAULT_CONFIDENCE_THRESHOLD, 0.05
|
307 |
+
)
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
+
def _annotate_image(image, detections):
|
310 |
+
# loop over the detections
|
311 |
+
(h, w) = image.shape[:2]
|
312 |
+
result: List[Detection] = []
|
313 |
+
for i in np.arange(0, detections.shape[2]):
|
314 |
+
confidence = detections[0, 0, i, 2]
|
315 |
+
|
316 |
+
if confidence > confidence_threshold:
|
317 |
+
# extract the index of the class label from the `detections`,
|
318 |
+
# then compute the (x, y)-coordinates of the bounding box for
|
319 |
+
# the object
|
320 |
+
idx = int(detections[0, 0, i, 1])
|
321 |
+
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
322 |
+
(startX, startY, endX, endY) = box.astype("int")
|
323 |
+
|
324 |
+
name = CLASSES[idx]
|
325 |
+
result.append(Detection(name=name, prob=float(confidence)))
|
326 |
+
|
327 |
+
# display the prediction
|
328 |
+
label = f"{name}: {round(confidence * 100, 2)}%"
|
329 |
+
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
|
330 |
+
y = startY - 15 if startY - 15 > 15 else startY + 15
|
331 |
+
cv2.putText(
|
332 |
+
image,
|
333 |
+
label,
|
334 |
+
(startX, y),
|
335 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
336 |
+
0.5,
|
337 |
+
COLORS[idx],
|
338 |
+
2,
|
339 |
+
)
|
340 |
+
return image, result
|
341 |
|
342 |
+
result_queue = (
|
343 |
+
queue.Queue()
|
344 |
+
) # TODO: A general-purpose shared state object may be more useful.
|
345 |
+
|
346 |
+
def callback(frame: av.VideoFrame) -> av.VideoFrame:
|
347 |
+
image = frame.to_ndarray(format="bgr24")
|
348 |
+
blob = cv2.dnn.blobFromImage(
|
349 |
+
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
350 |
+
)
|
351 |
+
net.setInput(blob)
|
352 |
+
detections = net.forward()
|
353 |
+
annotated_image, result = _annotate_image(image, detections)
|
354 |
+
|
355 |
+
# NOTE: This `recv` method is called in another thread,
|
356 |
+
# so it must be thread-safe.
|
357 |
+
result_queue.put(result) # TODO:
|
358 |
+
|
359 |
+
return av.VideoFrame.from_ndarray(annotated_image, format="bgr24")
|
360 |
|
361 |
webrtc_ctx = webrtc_streamer(
|
362 |
key="object-detection",
|
363 |
mode=WebRtcMode.SENDRECV,
|
364 |
rtc_configuration=RTC_CONFIGURATION,
|
365 |
+
video_frame_callback=callback,
|
366 |
media_stream_constraints={"video": True, "audio": False},
|
367 |
async_processing=True,
|
368 |
)
|
369 |
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
if st.checkbox("Show the detected labels", value=True):
|
371 |
if webrtc_ctx.state.playing:
|
372 |
labels_placeholder = st.empty()
|
|
|
376 |
# Then the rendered video frames and the labels displayed here
|
377 |
# are not strictly synchronized.
|
378 |
while True:
|
379 |
+
try:
|
380 |
+
result = result_queue.get(timeout=1.0)
|
381 |
+
except queue.Empty:
|
382 |
+
result = None
|
383 |
+
labels_placeholder.table(result)
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
st.markdown(
|
386 |
"This demo uses a model and code from "
|
|
|
390 |
|
391 |
|
392 |
def app_streaming():
|
393 |
+
"""Media streamings"""
|
394 |
MEDIAFILES = {
|
395 |
"big_buck_bunny_720p_2mb.mp4 (local)": {
|
396 |
"url": "https://sample-videos.com/video123/mp4/720/big_buck_bunny_720p_2mb.mp4", # noqa: E501
|
|
|
437 |
# options={"framerate": "30", "video_size": "1280x720"},
|
438 |
# )
|
439 |
|
440 |
+
key = f"media-streaming-{media_file_label}"
|
441 |
+
ctx: Optional[WebRtcStreamerContext] = st.session_state.get(key)
|
442 |
+
if media_file_info["type"] == "video" and ctx and ctx.state.playing:
|
443 |
+
_type = st.radio(
|
444 |
+
"Select transform type", ("noop", "cartoon", "edges", "rotate")
|
445 |
+
)
|
446 |
+
else:
|
447 |
+
_type = "noop"
|
448 |
+
|
449 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
450 |
+
img = frame.to_ndarray(format="bgr24")
|
451 |
+
|
452 |
+
if _type == "noop":
|
453 |
+
pass
|
454 |
+
elif _type == "cartoon":
|
455 |
+
# prepare color
|
456 |
+
img_color = cv2.pyrDown(cv2.pyrDown(img))
|
457 |
+
for _ in range(6):
|
458 |
+
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
|
459 |
+
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
|
460 |
+
|
461 |
+
# prepare edges
|
462 |
+
img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
463 |
+
img_edges = cv2.adaptiveThreshold(
|
464 |
+
cv2.medianBlur(img_edges, 7),
|
465 |
+
255,
|
466 |
+
cv2.ADAPTIVE_THRESH_MEAN_C,
|
467 |
+
cv2.THRESH_BINARY,
|
468 |
+
9,
|
469 |
+
2,
|
470 |
+
)
|
471 |
+
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
|
472 |
|
473 |
+
# combine color and edges
|
474 |
+
img = cv2.bitwise_and(img_color, img_edges)
|
475 |
+
elif _type == "edges":
|
476 |
+
# perform edge detection
|
477 |
+
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
|
478 |
+
elif _type == "rotate":
|
479 |
+
# rotate image
|
480 |
+
rows, cols, _ = img.shape
|
481 |
+
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), frame.time * 45, 1)
|
482 |
+
img = cv2.warpAffine(img, M, (cols, rows))
|
483 |
|
484 |
+
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
485 |
|
486 |
+
webrtc_streamer(
|
487 |
+
key=key,
|
488 |
mode=WebRtcMode.RECVONLY,
|
489 |
rtc_configuration=RTC_CONFIGURATION,
|
490 |
media_stream_constraints={
|
|
|
492 |
"audio": media_file_info["type"] == "audio",
|
493 |
},
|
494 |
player_factory=create_player,
|
495 |
+
video_frame_callback=video_frame_callback,
|
496 |
)
|
497 |
|
|
|
|
|
|
|
|
|
|
|
498 |
st.markdown(
|
499 |
"The video filter in this demo is based on "
|
500 |
"https://github.com/aiortc/aiortc/blob/2362e6d1f0c730a0f8c387bbea76546775ad2fe8/examples/server/server.py#L34. " # noqa: E501
|
|
|
609 |
|
610 |
|
611 |
def app_media_constraints():
|
612 |
+
"""A sample to configure MediaStreamConstraints object"""
|
613 |
frame_rate = 5
|
614 |
webrtc_streamer(
|
615 |
key="media-constraints",
|
|
|
628 |
|
629 |
|
630 |
def app_programatically_play():
|
631 |
+
"""A sample of controlling the playing state from Python."""
|
632 |
playing = st.checkbox("Playing", value=True)
|
633 |
|
634 |
webrtc_streamer(
|
635 |
+
key="programatic_control",
|
636 |
desired_playing_state=playing,
|
637 |
mode=WebRtcMode.SENDRECV,
|
638 |
rtc_configuration=RTC_CONFIGURATION,
|
639 |
)
|
640 |
|
641 |
|
642 |
+
def app_customize_ui_texts():
|
643 |
+
webrtc_streamer(
|
644 |
+
key="custom_ui_texts",
|
645 |
+
rtc_configuration=RTC_CONFIGURATION,
|
646 |
+
translations={
|
647 |
+
"start": "開始",
|
648 |
+
"stop": "停止",
|
649 |
+
"select_device": "デバイス選択",
|
650 |
+
"media_api_not_available": "Media APIが利用できない環境です",
|
651 |
+
"device_ask_permission": "メディアデバイスへのアクセスを許可してください",
|
652 |
+
"device_not_available": "メディアデバイスを利用できません",
|
653 |
+
"device_access_denied": "メディアデバイスへのアクセスが拒否されました",
|
654 |
+
},
|
655 |
+
)
|
656 |
+
|
657 |
+
|
658 |
if __name__ == "__main__":
|
659 |
import os
|
660 |
|
requirements.txt
CHANGED
@@ -4,6 +4,6 @@ numpy==1.22.3
|
|
4 |
opencv-python-headless==4.5.5.64
|
5 |
pydub==0.25.1
|
6 |
streamlit==1.9.0
|
7 |
-
streamlit_webrtc==0.
|
8 |
typing_extensions==4.1.1
|
9 |
protobuf~=3.19.0
|
|
|
4 |
opencv-python-headless==4.5.5.64
|
5 |
pydub==0.25.1
|
6 |
streamlit==1.9.0
|
7 |
+
streamlit_webrtc==0.40.0
|
8 |
typing_extensions==4.1.1
|
9 |
protobuf~=3.19.0
|