Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
# Load Fine-tuned GPT-2 Model from Hugging Face | |
model = GPT2LMHeadModel.from_pretrained("wenjun99/gpt2-finetuned") | |
tokenizer = GPT2Tokenizer.from_pretrained("wenjun99/gpt2-finetuned") | |
# Define Response Generation Function | |
def generate_response(query): | |
input_text = f"Query: {query}\nTask:" | |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_length=24, pad_token_id=tokenizer.eos_token_id) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# π€ Fine-Tuned GPT-2 Chatbot") | |
gr.Markdown("Enter a query to see how the fine-tuned GPT-2 model responds.") | |
query_input = gr.Textbox(label="Enter Query") | |
generate_btn = gr.Button("Generate Response") | |
output_text = gr.Textbox(label="Generated Response") | |
generate_btn.click(generate_response, inputs=query_input, outputs=output_text) | |
# Launch Gradio App | |
demo.launch() | |