import gradio as gr from transformers import GPT2Tokenizer, GPT2LMHeadModel # Load Fine-tuned GPT-2 Model from Hugging Face model = GPT2LMHeadModel.from_pretrained("wenjun99/gpt2-finetuned") tokenizer = GPT2Tokenizer.from_pretrained("wenjun99/gpt2-finetuned") # Define Response Generation Function def generate_response(query): input_text = f"Query: {query}\nTask:" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=24, pad_token_id=tokenizer.eos_token_id) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Gradio UI with gr.Blocks() as demo: gr.Markdown("# 🤖 Fine-Tuned GPT-2 Chatbot") gr.Markdown("Enter a query to see how the fine-tuned GPT-2 model responds.") query_input = gr.Textbox(label="Enter Query") generate_btn = gr.Button("Generate Response") output_text = gr.Textbox(label="Generated Response") generate_btn.click(generate_response, inputs=query_input, outputs=output_text) # Launch Gradio App demo.launch()