Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load DeepSeek model | |
model_id = "deepseek-ai/deepseek-llm-7b-chat" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
def generate_response(prompt, temperature, top_p, max_new_tokens, repetition_penalty): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
repetition_penalty=repetition_penalty | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
demo = gr.Interface(fn=generate_response, | |
inputs=[ | |
gr.Textbox(label="Prompt", lines=6, placeholder="Ask something..."), | |
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="top_p"), | |
gr.Slider(32, 2048, value=512, step=1, label="max_new_tokens"), | |
gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="repetition_penalty"), | |
], | |
outputs="text" | |
) | |
demo.launch() |