Spaces:
Sleeping
Sleeping
File size: 1,367 Bytes
0137b4c 3881d6b 0137b4c a04d03c 6653325 0137b4c 6653325 e72502b 3881d6b a04d03c e72502b 3881d6b 6653325 3881d6b a04d03c e72502b a04d03c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load DeepSeek model
model_id = "deepseek-ai/deepseek-llm-7b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
def generate_response(prompt, temperature, top_p, max_new_tokens, repetition_penalty):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
do_sample=True,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response,
inputs=[
gr.Textbox(label="Prompt", lines=6, placeholder="Ask something..."),
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="top_p"),
gr.Slider(32, 2048, value=512, step=1, label="max_new_tokens"),
gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="repetition_penalty"),
],
outputs="text"
)
demo.launch() |