multimodalart's picture
Update app.py
d09bee2
raw
history blame
7.74 kB
import gradio as gr
import numpy as np
import cv2
from PIL import Image
import torch
import base64
import requests
import random
import os
from io import BytesIO
from region_control import MultiDiffusion, get_views, preprocess_mask, seed_everything
from sketch_helper import get_high_freq_colors, color_quantization, create_binary_matrix
MAX_COLORS = 12
sd = MultiDiffusion("cuda", "2.1")
is_shared_ui = True if "weizmannscience/multidiffusion-region-based" in os.environ['SPACE_ID'] else False
is_gpu_associated = True if torch.cuda.is_available() else False
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
set_canvas_size ="""
async (aspect) => {
if(aspect ==='square'){
_updateCanvas(512,512)
}
if(aspect ==='horizontal'){
_updateCanvas(768,512)
}
if(aspect ==='vertical'){
_updateCanvas(512,768)
}
}
"""
def process_sketch(canvas_data, binary_matrixes):
binary_matrixes.clear()
base64_img = canvas_data['image']
image_data = base64.b64decode(base64_img.split(',')[1])
image = Image.open(BytesIO(image_data)).convert("RGB")
im2arr = np.array(image)
colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']]
colors_fixed = []
for color in colors:
r, g, b = color
if any(c != 255 for c in (r, g, b)):
binary_matrix = create_binary_matrix(im2arr, (r,g,b))
binary_matrixes.append(binary_matrix)
colors_fixed.append(gr.update(value=f'<div style="display:flex;align-items: center;justify-content: center"><img width="20%" style="margin-right: 1em" src="file/{binary_matrix}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b})"></div></div>'))
visibilities = []
colors = []
for n in range(MAX_COLORS):
visibilities.append(gr.update(visible=False))
colors.append(gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>'))
for n in range(len(colors_fixed)):
visibilities[n] = gr.update(visible=True)
colors[n] = colors_fixed[n]
return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]
def process_generation(model, binary_matrixes, boostrapping, aspect, steps, seed, master_prompt, negative_prompt, *prompts):
if(model != "stabilityai/stable-diffusion-2-1-base"):
sd = MultiDiffusion("cuda",model)
if(seed == -1):
seed = random.randint(1, 2147483647)
seed_everything(seed)
dimensions = {"square": (512, 512), "horizontal": (768, 512), "vertical": (512, 768)}
width, height = dimensions.get(aspect, dimensions["square"])
clipped_prompts = prompts[:len(binary_matrixes)]
prompts = [master_prompt] + list(clipped_prompts)
neg_prompts = [negative_prompt] * len(prompts)
fg_masks = torch.cat([preprocess_mask(mask_path, height // 8, width // 8, "cuda") for mask_path in binary_matrixes])
bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True)
bg_mask[bg_mask < 0] = 0
masks = torch.cat([bg_mask, fg_masks])
print(masks.size())
image = sd.generate(masks, prompts, neg_prompts, height, width, steps, bootstrapping=boostrapping)
return(image)
css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
'''
with gr.Blocks(css=css) as demo:
binary_matrixes = gr.State([])
gr.Markdown('''## Control your Stable Diffusion generation with Sketches (_beta_)
A beta version demo of MultiDiffusion region-based generation using Stable Diffusion model. To get started, draw your masks and type your prompts. More details in the [project page](https://multidiffusion.github.io).
''')
if(is_shared_ui):
gr.HTML(f'''
<div>To skip the queue or try the technique with custom models, you may duplicate the space and associate a GPU to it &nbsp;&nbsp;<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></div>
''')
elif(not is_gpu_associated):
gr.HTML(f'''
<div>You have succesfully duplicated the Space 🎉, but it is running on CPU - which may break this application. Go to the <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">settings</a> page to associate a GPU to it</div>
''')
with gr.Row():
with gr.Box(elem_id="main-image"):
canvas_data = gr.JSON(value={}, visible=False)
canvas = gr.HTML(canvas_html)
aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio", visible=False)
model = gr.Textbox(label="The id of any Hugging Face model in the diffusers format", value="stabilityai/stable-diffusion-2-1-base", visible=False if is_shared_ui else True)
button_run = gr.Button("I've finished my sketch",elem_id="main_button", interactive=True)
prompts = []
colors = []
color_row = [None] * MAX_COLORS
with gr.Column(visible=False) as post_sketch:
general_prompt = gr.Textbox(label="General Prompt")
for n in range(MAX_COLORS):
with gr.Row(visible=False) as color_row[n]:
with gr.Box(elem_id="color-bg"):
colors.append(gr.HTML('<div class="color-bg-item" style="background-color: black"></div>'))
prompts.append(gr.Textbox(label="Prompt for this mask"))
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Textbox(label="Global negative prompt for all prompts", value="low quality")
boostrapping = gr.Slider(label="Bootstrapping", minimum=1, maximum=100, value=20, step=1)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1)
final_run_btn = gr.Button("Generate!")
out_image = gr.Image(label="Result", ).style(width=512,height=512)
gr.Markdown('''
![Examples](https://multidiffusion.github.io/pics/tight.jpg)
''')
#css_height = gr.HTML("<style>#main-image{width: 512px} .fixed-height{height: 512px !important}</style>")
aspect.change(None, inputs=[aspect], outputs=None, _js = set_canvas_size)
button_run.click(process_sketch, inputs=[canvas_data, binary_matrixes], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors)
final_run_btn.click(process_generation, inputs=[model, binary_matrixes, boostrapping, aspect, steps, seed, general_prompt, negative_prompt, *prompts], outputs=out_image)
demo.load(None, None, None, _js=load_js)
demo.launch(debug=True)