Spaces:
Runtime error
Runtime error
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler | |
# suppress partial model loading warning | |
logging.set_verbosity_error() | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as T | |
import argparse | |
import numpy as np | |
from PIL import Image | |
def seed_everything(seed): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
# torch.backends.cudnn.deterministic = True | |
# torch.backends.cudnn.benchmark = True | |
def get_views(panorama_height, panorama_width, window_size=64, stride=8): | |
panorama_height /= 8 | |
panorama_width /= 8 | |
num_blocks_height = (panorama_height - window_size) // stride + 1 | |
num_blocks_width = (panorama_width - window_size) // stride + 1 | |
total_num_blocks = int(num_blocks_height * num_blocks_width) | |
views = [] | |
for i in range(total_num_blocks): | |
h_start = int((i // num_blocks_width) * stride) | |
h_end = h_start + window_size | |
w_start = int((i % num_blocks_width) * stride) | |
w_end = w_start + window_size | |
views.append((h_start, h_end, w_start, w_end)) | |
return views | |
class MultiDiffusion(nn.Module): | |
def __init__(self, device, sd_version='2.0', hf_key=None): | |
super().__init__() | |
self.device = device | |
self.sd_version = sd_version | |
print(f'[INFO] loading stable diffusion...') | |
if hf_key is not None: | |
print(f'[INFO] using hugging face custom model key: {hf_key}') | |
model_key = hf_key | |
elif self.sd_version == '2.1': | |
model_key = "stabilityai/stable-diffusion-2-1-base" | |
elif self.sd_version == '2.0': | |
model_key = "stabilityai/stable-diffusion-2-base" | |
elif self.sd_version == '1.5': | |
model_key = "runwayml/stable-diffusion-v1-5" | |
else: | |
model_key = self.sd_version #For custom models or fine-tunes, allow people to use arbitrary versions | |
#raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.') | |
# Create model | |
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae").to(self.device) | |
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer") | |
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder").to(self.device) | |
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet").to(self.device) | |
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler") | |
print(f'[INFO] loaded stable diffusion!') | |
def get_random_background(self, n_samples): | |
# sample random background with a constant rgb value | |
backgrounds = torch.rand(n_samples, 3, device=self.device)[:, :, None, None].repeat(1, 1, 512, 512) | |
return torch.cat([self.encode_imgs(bg.unsqueeze(0)) for bg in backgrounds]) | |
def get_text_embeds(self, prompt, negative_prompt): | |
# Tokenize text and get embeddings | |
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, | |
truncation=True, return_tensors='pt') | |
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] | |
# Do the same for unconditional embeddings | |
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length, | |
return_tensors='pt') | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
# Cat for final embeddings | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def encode_imgs(self, imgs): | |
imgs = 2 * imgs - 1 | |
posterior = self.vae.encode(imgs).latent_dist | |
latents = posterior.sample() * 0.18215 | |
return latents | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
imgs = self.vae.decode(latents).sample | |
imgs = (imgs / 2 + 0.5).clamp(0, 1) | |
return imgs | |
def generate(self, masks, prompts, negative_prompts='', height=512, width=2048, num_inference_steps=50, | |
guidance_scale=7.5, bootstrapping=20): | |
# get bootstrapping backgrounds | |
# can move this outside of the function to speed up generation. i.e., calculate in init | |
bootstrapping_backgrounds = self.get_random_background(bootstrapping) | |
# Prompts -> text embeds | |
text_embeds = self.get_text_embeds(prompts, negative_prompts) # [2 * len(prompts), 77, 768] | |
# Define panorama grid and get views | |
latent = torch.randn((1, self.unet.in_channels, height // 8, width // 8), device=self.device) | |
noise = latent.clone().repeat(len(prompts) - 1, 1, 1, 1) | |
views = get_views(height, width) | |
count = torch.zeros_like(latent) | |
value = torch.zeros_like(latent) | |
self.scheduler.set_timesteps(num_inference_steps) | |
with torch.autocast('cuda'): | |
for i, t in enumerate(self.scheduler.timesteps): | |
count.zero_() | |
value.zero_() | |
for h_start, h_end, w_start, w_end in views: | |
masks_view = masks[:, :, h_start:h_end, w_start:w_end] | |
latent_view = latent[:, :, h_start:h_end, w_start:w_end].repeat(len(prompts), 1, 1, 1) | |
if i < bootstrapping: | |
bg = bootstrapping_backgrounds[torch.randint(0, bootstrapping, (len(prompts) - 1,))] | |
bg = self.scheduler.add_noise(bg, noise[:, :, h_start:h_end, w_start:w_end], t) | |
latent_view[1:] = latent_view[1:] * masks_view[1:] + bg * (1 - masks_view[1:]) | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latent_view] * 2) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds)['sample'] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the denoising step with the reference model | |
latents_view_denoised = self.scheduler.step(noise_pred, t, latent_view)['prev_sample'] | |
value[:, :, h_start:h_end, w_start:w_end] += (latents_view_denoised * masks_view).sum(dim=0, | |
keepdims=True) | |
count[:, :, h_start:h_end, w_start:w_end] += masks_view.sum(dim=0, keepdims=True) | |
# take the MultiDiffusion step | |
latent = torch.where(count > 0, value / count, value) | |
# Img latents -> imgs | |
imgs = self.decode_latents(latent) # [1, 3, 512, 512] | |
img = T.ToPILImage()(imgs[0].cpu()) | |
return img | |
def preprocess_mask(mask_path, h, w, device): | |
mask = np.array(Image.open(mask_path).convert("L")) | |
mask = mask.astype(np.float32) / 255.0 | |
mask = mask[None, None] | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
mask = torch.from_numpy(mask).to(device) | |
mask = torch.nn.functional.interpolate(mask, size=(h, w), mode='nearest') | |
return mask | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--mask_paths', type=list) | |
parser.add_argument('--bg_prompt', type=str) | |
parser.add_argument('--bg_negative', type=str) # 'artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image' | |
parser.add_argument('--fg_prompts', type=list) | |
parser.add_argument('--fg_negative', type=list) # 'artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image' | |
parser.add_argument('--sd_version', type=str, default='2.0', choices=['1.5', '2.0'], | |
help="stable diffusion version") | |
parser.add_argument('--H', type=int, default=768) | |
parser.add_argument('--W', type=int, default=512) | |
parser.add_argument('--seed', type=int, default=0) | |
parser.add_argument('--steps', type=int, default=50) | |
parser.add_argument('--bootstrapping', type=int, default=20) | |
opt = parser.parse_args() | |
seed_everything(opt.seed) | |
device = torch.device('cuda') | |
sd = MultiDiffusion(device, opt.sd_version) | |
fg_masks = torch.cat([preprocess_mask(mask_path, opt.H // 8, opt.W // 8, device) for mask_path in opt.mask_paths]) | |
bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True) | |
bg_mask[bg_mask < 0] = 0 | |
masks = torch.cat([bg_mask, fg_masks]) | |
prompts = [opt.bg_prompt] + opt.fg_prompts | |
neg_prompts = [opt.bg_negative] + opt.fg_negative | |
img = sd.generate(masks, prompts, neg_prompts, opt.H, opt.W, opt.steps, bootstrapping=opt.bootstrapping) | |
# save image | |
img.save('out.png') | |