|
import gradio as gr |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
import torch |
|
import base64 |
|
import requests |
|
import random |
|
import os |
|
from io import BytesIO |
|
from region_control import MultiDiffusion, get_views, preprocess_mask, seed_everything |
|
from sketch_helper import get_high_freq_colors, color_quantization, create_binary_matrix |
|
MAX_COLORS = 12 |
|
|
|
sd = MultiDiffusion("cuda", "2.1") |
|
is_shared_ui = True if "weizmannscience/multidiffusion-region-based" in os.environ['SPACE_ID'] else False |
|
is_gpu_associated = True if torch.cuda.is_available() else False |
|
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>" |
|
load_js = """ |
|
async () => { |
|
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js" |
|
fetch(url) |
|
.then(res => res.text()) |
|
.then(text => { |
|
const script = document.createElement('script'); |
|
script.type = "module" |
|
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); |
|
document.head.appendChild(script); |
|
}); |
|
} |
|
""" |
|
|
|
get_js_colors = """ |
|
async (canvasData) => { |
|
const canvasEl = document.getElementById("canvas-root"); |
|
return [canvasEl._data] |
|
} |
|
""" |
|
|
|
set_canvas_size =""" |
|
async (aspect) => { |
|
if(aspect ==='square'){ |
|
_updateCanvas(512,512) |
|
} |
|
if(aspect ==='horizontal'){ |
|
_updateCanvas(768,512) |
|
} |
|
if(aspect ==='vertical'){ |
|
_updateCanvas(512,768) |
|
} |
|
} |
|
""" |
|
|
|
def process_sketch(canvas_data, binary_matrixes): |
|
binary_matrixes.clear() |
|
base64_img = canvas_data['image'] |
|
image_data = base64.b64decode(base64_img.split(',')[1]) |
|
image = Image.open(BytesIO(image_data)).convert("RGB") |
|
im2arr = np.array(image) |
|
colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']] |
|
colors_fixed = [] |
|
for color in colors: |
|
r, g, b = color |
|
if any(c != 255 for c in (r, g, b)): |
|
binary_matrix = create_binary_matrix(im2arr, (r,g,b)) |
|
binary_matrixes.append(binary_matrix) |
|
colors_fixed.append(gr.update(value=f'<div style="display:flex;align-items: center;justify-content: center"><img width="20%" style="margin-right: 1em" src="file/{binary_matrix}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b})"></div></div>')) |
|
visibilities = [] |
|
colors = [] |
|
for n in range(MAX_COLORS): |
|
visibilities.append(gr.update(visible=False)) |
|
colors.append(gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>')) |
|
for n in range(len(colors_fixed)): |
|
visibilities[n] = gr.update(visible=True) |
|
colors[n] = colors_fixed[n] |
|
return [gr.update(visible=True), binary_matrixes, *visibilities, *colors] |
|
|
|
def process_generation(model, binary_matrixes, boostrapping, aspect, steps, seed, master_prompt, negative_prompt, *prompts): |
|
if(model != "stabilityai/stable-diffusion-2-1-base"): |
|
sd = MultiDiffusion("cuda",model) |
|
if(seed == -1): |
|
seed = random.randint(1, 2147483647) |
|
seed_everything(seed) |
|
dimensions = {"square": (512, 512), "horizontal": (768, 512), "vertical": (512, 768)} |
|
width, height = dimensions.get(aspect, dimensions["square"]) |
|
|
|
clipped_prompts = prompts[:len(binary_matrixes)] |
|
prompts = [master_prompt] + list(clipped_prompts) |
|
neg_prompts = [negative_prompt] * len(prompts) |
|
fg_masks = torch.cat([preprocess_mask(mask_path, height // 8, width // 8, "cuda") for mask_path in binary_matrixes]) |
|
bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True) |
|
bg_mask[bg_mask < 0] = 0 |
|
masks = torch.cat([bg_mask, fg_masks]) |
|
print(masks.size()) |
|
image = sd.generate(masks, prompts, neg_prompts, height, width, steps, bootstrapping=boostrapping) |
|
return(image) |
|
|
|
css = ''' |
|
#color-bg{display:flex;justify-content: center;align-items: center;} |
|
.color-bg-item{width: 100%; height: 32px} |
|
#main_button{width:100%} |
|
<style> |
|
|
|
''' |
|
|
|
with gr.Blocks(css=css) as demo: |
|
binary_matrixes = gr.State([]) |
|
gr.Markdown('''## Control your Stable Diffusion generation with Sketches (_beta_) |
|
A beta version demo of MultiDiffusion region-based generation using Stable Diffusion model. To get started, draw your masks and type your prompts. More details in the [project page](https://multidiffusion.github.io). |
|
''') |
|
|
|
if(is_shared_ui): |
|
gr.HTML(f''' |
|
<div>To skip the queue or try the technique with custom models, you may duplicate the space and associate an A10 GPU to it <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></div> |
|
''') |
|
elif(not is_gpu_associated): |
|
gr.HTML(f''' |
|
<div>You have succesfully duplicated the Space 🎉, but it is running on CPU - which may break this application. Go to the <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">settings</a> page to associate a GPU to it</div> |
|
''') |
|
with gr.Row(): |
|
with gr.Box(elem_id="main-image"): |
|
canvas_data = gr.JSON(value={}, visible=False) |
|
canvas = gr.HTML(canvas_html) |
|
aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio", visible=False) |
|
model = gr.Textbox(label="The id of any Hugging Face model in the diffusers format", value="stabilityai/stable-diffusion-2-1-base", visible=False if is_shared_ui else True) |
|
button_run = gr.Button("I've finished my sketch",elem_id="main_button", interactive=True) |
|
|
|
prompts = [] |
|
colors = [] |
|
color_row = [None] * MAX_COLORS |
|
with gr.Column(visible=False) as post_sketch: |
|
general_prompt = gr.Textbox(label="General Prompt") |
|
for n in range(MAX_COLORS): |
|
with gr.Row(visible=False) as color_row[n]: |
|
with gr.Box(elem_id="color-bg"): |
|
colors.append(gr.HTML('<div class="color-bg-item" style="background-color: black"></div>')) |
|
prompts.append(gr.Textbox(label="Prompt for this mask")) |
|
with gr.Accordion("Advanced options", open=False): |
|
negative_prompt = gr.Textbox(label="Global negative prompt for all prompts", value="low quality") |
|
boostrapping = gr.Slider(label="Bootstrapping", minimum=1, maximum=100, value=20, step=1) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1) |
|
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1) |
|
final_run_btn = gr.Button("Generate!") |
|
|
|
out_image = gr.Image(label="Result", ).style(width=512,height=512) |
|
gr.Markdown(''' |
|
![Examples](https://multidiffusion.github.io/pics/tight.jpg) |
|
''') |
|
|
|
aspect.change(None, inputs=[aspect], outputs=None, _js = set_canvas_size) |
|
button_run.click(process_sketch, inputs=[canvas_data, binary_matrixes], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors) |
|
final_run_btn.click(process_generation, inputs=[model, binary_matrixes, boostrapping, aspect, steps, seed, general_prompt, negative_prompt, *prompts], outputs=out_image) |
|
demo.load(None, None, None, _js=load_js) |
|
demo.launch(debug=True) |