guardrails-genie / guardrails_genie /guardrails /entity_recognition /presidio_entity_recognition_guardrail.py
geekyrakshit's picture
add: docs for entity recognition guardrails
a414829
raw
history blame
10.4 kB
from typing import Any, Dict, List, Optional
import weave
from presidio_analyzer import (
AnalyzerEngine,
Pattern,
PatternRecognizer,
RecognizerRegistry,
)
from presidio_anonymizer import AnonymizerEngine
from pydantic import BaseModel
from ..base import Guardrail
class PresidioEntityRecognitionResponse(BaseModel):
contains_entities: bool
detected_entities: Dict[str, List[str]]
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
class PresidioEntityRecognitionSimpleResponse(BaseModel):
contains_entities: bool
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
# TODO: Add support for transformers workflow and not just Spacy
class PresidioEntityRecognitionGuardrail(Guardrail):
"""
A guardrail class for entity recognition and anonymization using Presidio.
This class extends the Guardrail base class to provide functionality for
detecting and optionally anonymizing entities in text using the Presidio
library. It leverages Presidio's AnalyzerEngine and AnonymizerEngine to
perform these tasks.
!!! example "Using PresidioEntityRecognitionGuardrail"
```python
from guardrails_genie.guardrails.entity_recognition import PresidioEntityRecognitionGuardrail
# Initialize with default entities
guardrail = PresidioEntityRecognitionGuardrail(should_anonymize=True)
# Or with specific entities
selected_entities = ["CREDIT_CARD", "US_SSN", "EMAIL_ADDRESS"]
guardrail = PresidioEntityRecognitionGuardrail(
selected_entities=selected_entities,
should_anonymize=True
)
```
Attributes:
analyzer (AnalyzerEngine): The Presidio engine used for entity analysis.
anonymizer (AnonymizerEngine): The Presidio engine used for text anonymization.
selected_entities (List[str]): A list of entity types to detect in the text.
should_anonymize (bool): A flag indicating whether detected entities should be anonymized.
language (str): The language of the text to be analyzed.
Args:
selected_entities (Optional[List[str]]): A list of entity types to detect in the text.
should_anonymize (bool): A flag indicating whether detected entities should be anonymized.
language (str): The language of the text to be analyzed.
deny_lists (Optional[Dict[str, List[str]]]): A dictionary of entity types and their
corresponding deny lists.
regex_patterns (Optional[Dict[str, List[Dict[str, str]]]]): A dictionary of entity
types and their corresponding regex patterns.
custom_recognizers (Optional[List[Any]]): A list of custom recognizers to add to the
analyzer.
show_available_entities (bool): A flag indicating whether to print available entities.
"""
@staticmethod
def get_available_entities() -> List[str]:
registry = RecognizerRegistry()
analyzer = AnalyzerEngine(registry=registry)
return [
recognizer.supported_entities[0]
for recognizer in analyzer.registry.recognizers
]
analyzer: AnalyzerEngine
anonymizer: AnonymizerEngine
selected_entities: List[str]
should_anonymize: bool
language: str
def __init__(
self,
selected_entities: Optional[List[str]] = None,
should_anonymize: bool = False,
language: str = "en",
deny_lists: Optional[Dict[str, List[str]]] = None,
regex_patterns: Optional[Dict[str, List[Dict[str, str]]]] = None,
custom_recognizers: Optional[List[Any]] = None,
show_available_entities: bool = False,
):
# If show_available_entities is True, print available entities
if show_available_entities:
available_entities = self.get_available_entities()
print("\nAvailable entities:")
print("=" * 25)
for entity in available_entities:
print(f"- {entity}")
print("=" * 25 + "\n")
# Initialize default values to all available entities
if selected_entities is None:
selected_entities = self.get_available_entities()
# Get available entities dynamically
available_entities = self.get_available_entities()
# Filter out invalid entities and warn user
invalid_entities = [e for e in selected_entities if e not in available_entities]
valid_entities = [e for e in selected_entities if e in available_entities]
if invalid_entities:
print(
f"\nWarning: The following entities are not available and will be ignored: {invalid_entities}"
)
print(f"Continuing with valid entities: {valid_entities}")
selected_entities = valid_entities
# Initialize analyzer with default recognizers
analyzer = AnalyzerEngine()
# Add custom recognizers if provided
if custom_recognizers:
for recognizer in custom_recognizers:
analyzer.registry.add_recognizer(recognizer)
# Add deny list recognizers if provided
if deny_lists:
for entity_type, tokens in deny_lists.items():
deny_list_recognizer = PatternRecognizer(
supported_entity=entity_type, deny_list=tokens
)
analyzer.registry.add_recognizer(deny_list_recognizer)
# Add regex pattern recognizers if provided
if regex_patterns:
for entity_type, patterns in regex_patterns.items():
presidio_patterns = [
Pattern(
name=pattern.get("name", f"pattern_{i}"),
regex=pattern["regex"],
score=pattern.get("score", 0.5),
)
for i, pattern in enumerate(patterns)
]
regex_recognizer = PatternRecognizer(
supported_entity=entity_type, patterns=presidio_patterns
)
analyzer.registry.add_recognizer(regex_recognizer)
# Initialize Presidio engines
anonymizer = AnonymizerEngine()
# Call parent class constructor with all fields
super().__init__(
analyzer=analyzer,
anonymizer=anonymizer,
selected_entities=selected_entities,
should_anonymize=should_anonymize,
language=language,
)
@weave.op()
def guard(
self, prompt: str, return_detected_types: bool = True, **kwargs
) -> PresidioEntityRecognitionResponse | PresidioEntityRecognitionSimpleResponse:
"""
Analyzes the input prompt for entity recognition using the Presidio framework.
This function utilizes the Presidio AnalyzerEngine to detect entities within the
provided text prompt. It supports custom recognizers, deny lists, and regex patterns
for entity detection. The detected entities are grouped by their types and an
explanation of the findings is generated. If anonymization is enabled, the detected
entities in the text are anonymized.
Args:
prompt (str): The text to be analyzed for entity recognition.
return_detected_types (bool): Determines the type of response. If True, the
response includes detailed information about detected entity types.
Returns:
PresidioEntityRecognitionResponse | PresidioEntityRecognitionSimpleResponse:
A response object containing information about whether entities were detected,
the types and instances of detected entities, an explanation of the analysis,
and optionally, the anonymized text if anonymization is enabled.
"""
# Analyze text for entities
analyzer_results = self.analyzer.analyze(
text=str(prompt), entities=self.selected_entities, language=self.language
)
# Group results by entity type
detected_entities = {}
for result in analyzer_results:
entity_type = result.entity_type
text_slice = prompt[result.start : result.end]
if entity_type not in detected_entities:
detected_entities[entity_type] = []
detected_entities[entity_type].append(text_slice)
# Create explanation
explanation_parts = []
if detected_entities:
explanation_parts.append("Found the following entities in the text:")
for entity_type, instances in detected_entities.items():
explanation_parts.append(
f"- {entity_type}: {len(instances)} instance(s)"
)
else:
explanation_parts.append("No entities detected in the text.")
# Add information about what was checked
explanation_parts.append("\nChecked for these entity types:")
for entity in self.selected_entities:
explanation_parts.append(f"- {entity}")
# Anonymize if requested
anonymized_text = None
if self.should_anonymize and detected_entities:
anonymized_result = self.anonymizer.anonymize(
text=prompt, analyzer_results=analyzer_results
)
anonymized_text = anonymized_result.text
if return_detected_types:
return PresidioEntityRecognitionResponse(
contains_entities=bool(detected_entities),
detected_entities=detected_entities,
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text,
)
else:
return PresidioEntityRecognitionSimpleResponse(
contains_entities=bool(detected_entities),
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text,
)
@weave.op()
def predict(
self, prompt: str, return_detected_types: bool = True, **kwargs
) -> PresidioEntityRecognitionResponse | PresidioEntityRecognitionSimpleResponse:
return self.guard(prompt, return_detected_types=return_detected_types, **kwargs)