Spaces:
vztu
/
Runtime error

COVER / app.py
nanushio
- [MINOR] [SOURCE] [UPDATE] 1. update app.py
acc4b2f
raw
history blame
3.71 kB
import gradio as gr
import torch
import argparse
import pickle as pkl
import decord
from decord import VideoReader
import numpy as np
import yaml
from cover.datasets import UnifiedFrameSampler, spatial_temporal_view_decomposition
from cover.models import COVER
mean, std = (
torch.FloatTensor([123.675, 116.28, 103.53]),
torch.FloatTensor([58.395, 57.12, 57.375]),
)
mean_clip, std_clip = (
torch.FloatTensor([122.77, 116.75, 104.09]),
torch.FloatTensor([68.50, 66.63, 70.32])
)
sample_interval = 30
def get_sampler_params(video_path):
vr = VideoReader(video_path)
total_frames = len(vr)
clip_len = (total_frames + sample_interval // 2) // sample_interval
if clip_len == 0:
clip_len = 1
t_frag = clip_len
return total_frames, clip_len, t_frag
def fuse_results(results: list):
x = (results[0] + results[1] + results[2])
return {
"semantic" : results[0],
"technical": results[1],
"aesthetic": results[2],
"overall" : x,
}
def inference_one_video(input_video):
"""
BASIC SETTINGS
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open("./cover.yml", "r") as f:
opt = yaml.safe_load(f)
dopt = opt["data"]["val-ytugc"]["args"]
temporal_samplers = {}
# auto decision of parameters of sampler
total_frames, clip_len, t_frag = get_sampler_params(input_video)
for stype, sopt in dopt["sample_types"].items():
sopt["clip_len"] = clip_len
sopt["t_frag"] = t_frag
if stype == 'technical' or stype == 'aesthetic':
if total_frames > 1:
sopt["clip_len"] = clip_len * 2
if stype == 'technical':
sopt["aligned"] = sopt["clip_len"]
print(sopt["clip_len"], sopt["t_frag"])
temporal_samplers[stype] = UnifiedFrameSampler(
sopt["clip_len"] // sopt["t_frag"],
sopt["t_frag"],
sopt["frame_interval"],
sopt["num_clips"],
)
"""
LOAD MODEL
"""
evaluator = COVER(**opt["model"]["args"]).to(device)
state_dict = torch.load(opt["test_load_path"], map_location=device)
# set strict=False here to avoid error of missing
# weight of prompt_learner in clip-iqa+, cross-gate
evaluator.load_state_dict(state_dict['state_dict'], strict=False)
"""
TESTING
"""
views, _ = spatial_temporal_view_decomposition(
input_video, dopt["sample_types"], temporal_samplers
)
for k, v in views.items():
num_clips = dopt["sample_types"][k].get("num_clips", 1)
if k == 'technical' or k == 'aesthetic':
views[k] = (
((v.permute(1, 2, 3, 0) - mean) / std)
.permute(3, 0, 1, 2)
.reshape(v.shape[0], num_clips, -1, *v.shape[2:])
.transpose(0, 1)
.to(device)
)
elif k == 'semantic':
views[k] = (
((v.permute(1, 2, 3, 0) - mean_clip) / std_clip)
.permute(3, 0, 1, 2)
.reshape(v.shape[0], num_clips, -1, *v.shape[2:])
.transpose(0, 1)
.to(device)
)
results = [r.mean().item() for r in evaluator(views)]
pred_score = fuse_results(results)
return pred_score
# Define the input and output types for Gradio using the new API
video_input = gr.Video(label="Input Video")
output_label = gr.JSON(label="Scores")
# Create the Gradio interface
gradio_app = gr.Interface(fn=inference_one_video, inputs=video_input, outputs=output_label)
if __name__ == "__main__":
gradio_app.launch()