nanushio
commited on
Commit
•
acc4b2f
1
Parent(s):
a877246
- [MINOR] [SOURCE] [UPDATE] 1. update app.py
Browse files
app.py
CHANGED
@@ -23,6 +23,18 @@ mean_clip, std_clip = (
|
|
23 |
torch.FloatTensor([68.50, 66.63, 70.32])
|
24 |
)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def fuse_results(results: list):
|
27 |
x = (results[0] + results[1] + results[2])
|
28 |
return {
|
@@ -42,7 +54,19 @@ def inference_one_video(input_video):
|
|
42 |
|
43 |
dopt = opt["data"]["val-ytugc"]["args"]
|
44 |
temporal_samplers = {}
|
|
|
|
|
|
|
|
|
45 |
for stype, sopt in dopt["sample_types"].items():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
temporal_samplers[stype] = UnifiedFrameSampler(
|
47 |
sopt["clip_len"] // sopt["t_frag"],
|
48 |
sopt["t_frag"],
|
|
|
23 |
torch.FloatTensor([68.50, 66.63, 70.32])
|
24 |
)
|
25 |
|
26 |
+
sample_interval = 30
|
27 |
+
|
28 |
+
def get_sampler_params(video_path):
|
29 |
+
vr = VideoReader(video_path)
|
30 |
+
total_frames = len(vr)
|
31 |
+
clip_len = (total_frames + sample_interval // 2) // sample_interval
|
32 |
+
if clip_len == 0:
|
33 |
+
clip_len = 1
|
34 |
+
t_frag = clip_len
|
35 |
+
|
36 |
+
return total_frames, clip_len, t_frag
|
37 |
+
|
38 |
def fuse_results(results: list):
|
39 |
x = (results[0] + results[1] + results[2])
|
40 |
return {
|
|
|
54 |
|
55 |
dopt = opt["data"]["val-ytugc"]["args"]
|
56 |
temporal_samplers = {}
|
57 |
+
|
58 |
+
# auto decision of parameters of sampler
|
59 |
+
total_frames, clip_len, t_frag = get_sampler_params(input_video)
|
60 |
+
|
61 |
for stype, sopt in dopt["sample_types"].items():
|
62 |
+
sopt["clip_len"] = clip_len
|
63 |
+
sopt["t_frag"] = t_frag
|
64 |
+
if stype == 'technical' or stype == 'aesthetic':
|
65 |
+
if total_frames > 1:
|
66 |
+
sopt["clip_len"] = clip_len * 2
|
67 |
+
if stype == 'technical':
|
68 |
+
sopt["aligned"] = sopt["clip_len"]
|
69 |
+
print(sopt["clip_len"], sopt["t_frag"])
|
70 |
temporal_samplers[stype] = UnifiedFrameSampler(
|
71 |
sopt["clip_len"] // sopt["t_frag"],
|
72 |
sopt["t_frag"],
|