Spaces:
Running
Running
from __future__ import annotations | |
import os | |
import random | |
from collections import defaultdict | |
from importlib.resources import files | |
import torch | |
from torch.nn.utils.rnn import pad_sequence | |
import jieba | |
from pypinyin import lazy_pinyin, Style | |
# seed everything | |
def seed_everything(seed=0): | |
random.seed(seed) | |
os.environ["PYTHONHASHSEED"] = str(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
# helpers | |
def exists(v): | |
return v is not None | |
def default(v, d): | |
return v if exists(v) else d | |
# tensor helpers | |
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821 | |
if not exists(length): | |
length = t.amax() | |
seq = torch.arange(length, device=t.device) | |
return seq[None, :] < t[:, None] | |
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821 | |
max_seq_len = seq_len.max().item() | |
seq = torch.arange(max_seq_len, device=start.device).long() | |
start_mask = seq[None, :] >= start[:, None] | |
end_mask = seq[None, :] < end[:, None] | |
return start_mask & end_mask | |
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821 | |
lengths = (frac_lengths * seq_len).long() | |
max_start = seq_len - lengths | |
rand = torch.rand_like(frac_lengths) | |
start = (max_start * rand).long().clamp(min=0) | |
end = start + lengths | |
return mask_from_start_end_indices(seq_len, start, end) | |
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722 | |
if not exists(mask): | |
return t.mean(dim=1) | |
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device)) | |
num = t.sum(dim=1) | |
den = mask.float().sum(dim=1) | |
return num / den.clamp(min=1.0) | |
# simple utf-8 tokenizer, since paper went character based | |
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722 | |
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style | |
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True) | |
return text | |
# char tokenizer, based on custom dataset's extracted .txt file | |
def list_str_to_idx( | |
text: list[str] | list[list[str]], | |
vocab_char_map: dict[str, int], # {char: idx} | |
padding_value=-1, | |
) -> int["b nt"]: # noqa: F722 | |
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style | |
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True) | |
return text | |
# Get tokenizer | |
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): | |
""" | |
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file | |
- "char" for char-wise tokenizer, need .txt vocab_file | |
- "byte" for utf-8 tokenizer | |
- "custom" if you're directly passing in a path to the vocab.txt you want to use | |
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols | |
- if use "char", derived from unfiltered character & symbol counts of custom dataset | |
- if use "byte", set to 256 (unicode byte range) | |
""" | |
if tokenizer in ["pinyin", "char"]: | |
tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt") | |
with open(tokenizer_path, "r", encoding="utf-8") as f: | |
vocab_char_map = {} | |
for i, char in enumerate(f): | |
vocab_char_map[char[:-1]] = i | |
vocab_size = len(vocab_char_map) | |
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" | |
elif tokenizer == "byte": | |
vocab_char_map = None | |
vocab_size = 256 | |
elif tokenizer == "custom": | |
with open(dataset_name, "r", encoding="utf-8") as f: | |
vocab_char_map = {} | |
for i, char in enumerate(f): | |
vocab_char_map[char[:-1]] = i | |
vocab_size = len(vocab_char_map) | |
return vocab_char_map, vocab_size | |
# convert char to pinyin | |
def convert_char_to_pinyin(text_list, polyphone=True): | |
final_text_list = [] | |
god_knows_why_en_testset_contains_zh_quote = str.maketrans( | |
{"“": '"', "”": '"', "‘": "'", "’": "'"} | |
) # in case librispeech (orig no-pc) test-clean | |
custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov | |
for text in text_list: | |
char_list = [] | |
text = text.translate(god_knows_why_en_testset_contains_zh_quote) | |
text = text.translate(custom_trans) | |
for seg in jieba.cut(text): | |
seg_byte_len = len(bytes(seg, "UTF-8")) | |
if seg_byte_len == len(seg): # if pure alphabets and symbols | |
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": | |
char_list.append(" ") | |
char_list.extend(seg) | |
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters | |
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) | |
for c in seg: | |
if c not in "。,、;:?!《》【】—…": | |
char_list.append(" ") | |
char_list.append(c) | |
else: # if mixed chinese characters, alphabets and symbols | |
for c in seg: | |
if ord(c) < 256: | |
char_list.extend(c) | |
else: | |
if c not in "。,、;:?!《》【】—…": | |
char_list.append(" ") | |
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)) | |
else: # if is zh punc | |
char_list.append(c) | |
final_text_list.append(char_list) | |
return final_text_list | |
# filter func for dirty data with many repetitions | |
def repetition_found(text, length=2, tolerance=10): | |
pattern_count = defaultdict(int) | |
for i in range(len(text) - length + 1): | |
pattern = text[i : i + length] | |
pattern_count[pattern] += 1 | |
for pattern, count in pattern_count.items(): | |
if count > tolerance: | |
return True | |
return False | |