dGPredictor / app.py
vuu10's picture
Update app.py
f410cbd
raw
history blame
15.2 kB
import streamlit as st
import pandas as pd
import numpy as np
import re
from PIL import Image
import webbrowser
import json
import pickle
import sys
import joblib
import sys
import os
try:
from openbabel import openbabel
except:
print ("openbabel not found, Installing openbabel ")
os.system("conda install -c openbabel openbabel")
from openbabel import openbabel
sys.path.append('./CC/')
import chemaxon
from chemaxon import *
from compound import Compound
from compound_cacher import CompoundCacher
from rdkit.Chem import rdChemReactions as Reactions
from rdkit.Chem import Draw
from rdkit import Chem
@st.cache(allow_output_mutation=True)
def load_smiles():
db = pd.read_csv('./data/cache_compounds_20160818.csv',
index_col='compound_id')
db_smiles = db['smiles_pH7'].to_dict()
return db_smiles
@st.cache(allow_output_mutation=True)
def load_molsig_rad1():
molecular_signature_r1 = json.load(open('./data/decompose_vector_ac.json'))
return molecular_signature_r1
@st.cache(allow_output_mutation=True)
def load_molsig_rad2():
molecular_signature_r2 = json.load(
open('./data/decompose_vector_ac_r2_py3_indent_modified_manual.json'))
return molecular_signature_r2
@st.cache(allow_output_mutation=True)
def load_model():
filename = './model/M12_model_BR.pkl'
loaded_model = joblib.load(open(filename, 'rb'))
return loaded_model
@st.cache(allow_output_mutation=True)
def load_compound_cache():
ccache = CompoundCacher()
return ccache
def count_substructures(radius, molecule):
"""Helper function for get the information of molecular signature of a
metabolite. The relaxed signature requires the number of each substructure
to construct a matrix for each molecule.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
molecule : Molecule
a molecule object create by RDkit (e.g. Chem.MolFromInchi(inchi_code)
or Chem.MolToSmiles(smiles_code))
Returns
-------
dict
dictionary of molecular signature for a molecule,
{smiles: molecular_signature}
"""
m = molecule
smi_count = dict()
atomList = [atom for atom in m.GetAtoms()]
for i in range(len(atomList)):
env = Chem.FindAtomEnvironmentOfRadiusN(m, radius, i)
atoms = set()
for bidx in env:
atoms.add(m.GetBondWithIdx(bidx).GetBeginAtomIdx())
atoms.add(m.GetBondWithIdx(bidx).GetEndAtomIdx())
# only one atom is in this environment, such as O in H2O
if len(atoms) == 0:
atoms = {i}
smi = Chem.MolFragmentToSmiles(m, atomsToUse=list(atoms),
bondsToUse=env, canonical=True)
if smi in smi_count:
smi_count[smi] = smi_count[smi] + 1
else:
smi_count[smi] = 1
return smi_count
def decompse_novel_mets_rad1(novel_smiles, radius=1):
decompose_vector = dict()
for cid, smiles_pH7 in novel_smiles.items():
mol = Chem.MolFromSmiles(smiles_pH7)
mol = Chem.RemoveHs(mol)
# Chem.RemoveStereochemistry(mol)
smi_count = count_substructures(radius, mol)
decompose_vector[cid] = smi_count
return decompose_vector
def decompse_novel_mets_rad2(novel_smiles, radius=2):
decompose_vector = dict()
for cid, smiles_pH7 in novel_smiles.items():
mol = Chem.MolFromSmiles(smiles_pH7)
mol = Chem.RemoveHs(mol)
# Chem.RemoveStereochemistry(mol)
smi_count = count_substructures(radius, mol)
decompose_vector[cid] = smi_count
return decompose_vector
# def parse_rule(rxn,df_rule):
# df = df_rule
# rule_df = df[rxn].to_frame()
# # new_df = rule_df[(rule_df.T != 0).any()]
# return rule_df[(rule_df.T != 0).any()]
def parse_reaction_formula_side(s):
"""
Parses the side formula, e.g. '2 C00001 + C00002 + 3 C00003'
Ignores stoichiometry.
Returns:
The set of CIDs.
"""
if s.strip() == "null":
return {}
compound_bag = {}
for member in re.split('\s+\+\s+', s):
tokens = member.split(None, 1)
if len(tokens) == 0:
continue
if len(tokens) == 1:
amount = 1
key = member
else:
amount = float(tokens[0])
key = tokens[1]
compound_bag[key] = compound_bag.get(key, 0) + amount
return compound_bag
def parse_formula(formula, arrow='<=>', rid=None):
"""
Parses a two-sided formula such as: 2 C00001 => C00002 + C00003
Return:
The set of substrates, products and the direction of the reaction
"""
tokens = formula.split(arrow)
if len(tokens) < 2:
print(('Reaction does not contain the arrow sign (%s): %s'
% (arrow, formula)))
if len(tokens) > 2:
print(('Reaction contains more than one arrow sign (%s): %s'
% (arrow, formula)))
left = tokens[0].strip()
right = tokens[1].strip()
sparse_reaction = {}
for cid, count in parse_reaction_formula_side(left).items():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) - count
for cid, count in parse_reaction_formula_side(right).items():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) + count
return sparse_reaction
def draw_rxn_figure(rxn_dict, db_smiles, novel_smiles):
# db_smiles = load_smiles()
left = ''
right = ''
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is not considered
if stoic > 0:
if met in db_smiles:
right = right + db_smiles[met] + '.'
else:
right = right + novel_smiles[met] + '.'
else:
if met in db_smiles:
left = left + db_smiles[met] + '.'
else:
left = left + novel_smiles[met] + '.'
smarts = left[:-1] + '>>' + right[:-1]
# print smarts
smarts = str(smarts)
rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True)
return Draw.ReactionToImage(rxn) # , subImgSize=(400, 400))
# def draw_group_changes(rxn,df_rule):
# df = parse_rule(rxn,df_rule)
# group_dict = df.to_dict()[rxn]
# left = ''
# right = ''
# for smiles,stoic in group_dict.iteritems():
# if stoic > 0:
# right = right + smiles + '.'
# else:
# left = left + smiles + '.'
# smarts = left[:-1] + '>>' + right[:-1]
# rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True)
# return Draw.ReactionToImage(rxn)
# def get_rxn_rule(rid):
# reaction_dict = json.load(open('../data/optstoic_v3_Sji_dict.json'))
# molecular_signature = json.load(open('../data/decompose_vector_ac.json'))
# molsigna_df = pd.DataFrame.from_dict(molecular_signature).fillna(0)
# all_mets = molsigna_df.columns.tolist()
# all_mets.append("C00080")
# all_mets.append("C00282")
# rule_df = pd.DataFrame(index=molsigna_df.index)
# info = reaction_dict[rid]
# # skip the reactions with missing metabolites
# mets = info.keys()
# flag = False
# for met in mets:
# if met not in all_mets:
# flag = True
# break
# if flag:
# return None
# rule_df[rid] = 0
# for met, stoic in info.items():
# if met == "C00080" or met == "C00282":
# continue # hydogen is zero
# rule_df[rid] += molsigna_df[met] * stoic
# return rule_df
def get_rule(rxn_dict, molsig1, molsig2, novel_decomposed1, novel_decomposed2):
if novel_decomposed1 != None:
for cid in novel_decomposed1:
molsig1[cid] = novel_decomposed1[cid]
if novel_decomposed2 != None:
for cid in novel_decomposed2:
molsig2[cid] = novel_decomposed2[cid]
molsigna_df1 = pd.DataFrame.from_dict(molsig1).fillna(0)
all_mets1 = molsigna_df1.columns.tolist()
all_mets1.append("C00080")
all_mets1.append("C00282")
molsigna_df2 = pd.DataFrame.from_dict(molsig2).fillna(0)
all_mets2 = molsigna_df2.columns.tolist()
all_mets2.append("C00080")
all_mets2.append("C00282")
moieties_r1 = open('./data/group_names_r1.txt')
moieties_r2 = open('./data/group_names_r2_py3_modified_manual.txt')
moie_r1 = moieties_r1.read().splitlines()
moie_r2 = moieties_r2.read().splitlines()
molsigna_df1 = molsigna_df1.reindex(moie_r1)
molsigna_df2 = molsigna_df2.reindex(moie_r2)
rule_df1 = pd.DataFrame(index=molsigna_df1.index)
rule_df2 = pd.DataFrame(index=molsigna_df2.index)
# for rid, value in reaction_dict.items():
# # skip the reactions with missing metabolites
# mets = value.keys()
# flag = False
# for met in mets:
# if met not in all_mets:
# flag = True
# break
# if flag: continue
rule_df1['change'] = 0
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df1['change'] += molsigna_df1[met] * stoic
rule_df2['change'] = 0
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df2['change'] += molsigna_df2[met] * stoic
rule_vec1 = rule_df1.to_numpy().T
rule_vec2 = rule_df2.to_numpy().T
m1, n1 = rule_vec1.shape
m2, n2 = rule_vec2.shape
zeros1 = np.zeros((m1, 44))
zeros2 = np.zeros((m2, 44))
X1 = np.concatenate((rule_vec1, zeros1), 1)
X2 = np.concatenate((rule_vec2, zeros2), 1)
rule_comb = np.concatenate((X1, X2), 1)
# rule_df_final = {}
# rule_df_final['rad1'] = rule_df1
# rule_df_final['rad2'] = rule_df2
return rule_comb, rule_df1, rule_df2
def get_ddG0(rxn_dict, pH, I, novel_mets):
ccache = CompoundCacher()
# ddG0 = get_transform_ddG0(rxn_dict, ccache, pH, I, T)
T = 298.15
ddG0_forward = 0
for compound_id, coeff in rxn_dict.items():
if novel_mets != None and compound_id in novel_mets:
comp = novel_mets[compound_id]
else:
comp = ccache.get_compound(compound_id)
ddG0_forward += coeff * comp.transform_pH7(pH, I, T)
return ddG0_forward
def get_dG0(rxn_dict, rid, pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets):
# rule_df = get_rxn_rule(rid)
rule_comb, rule_df1, rule_df2 = get_rule(
rxn_dict, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2)
X = rule_comb
# X = X.reshape(1,-1)
# pdb.set_trace()
# print(np.shape(X1))
# print(np.shape(X2))
# print(np.shape(X))
ymean, ystd = loaded_model.predict(X, return_std=True)
# print(ymean)
# print(ystd)
result = {}
# result['dG0'] = ymean[0] + get_ddG0(rxn_dict, pH, I)
# result['standard deviation'] = ystd[0]
# result_df = pd.DataFrame([result])
# result_df.style.hide_index()
# return result_df
return ymean[0] + get_ddG0(rxn_dict, pH, I, novel_mets), ystd[0], rule_df1, rule_df2
# return ymean[0],ystd[0]
def parse_novel_molecule(add_info):
result = {}
for cid, InChI in add_info.items():
c = Compound.from_inchi('Test', cid, InChI)
result[cid] = c
return result
def parse_novel_smiles(result):
novel_smiles = {}
for cid, c in result.items():
smiles = c.smiles_pH7
novel_smiles[cid] = smiles
return novel_smiles
def main():
# def img_to_bytes(img_path):
# img_bytes = Path(img_path).read_bytes()
# encoded = base64.b64encode(img_bytes).decode()
# return encoded
# # st.title('dGPredictor')
# header_html = "<img src='../figures/header.png'>"
# st.markdown(
# header_html, unsafe_allow_html=True,
# )
db_smiles = load_smiles()
molsig_r1 = load_molsig_rad1()
molsig_r2 = load_molsig_rad2()
loaded_model = load_model()
ccache = load_compound_cache()
st.image('./figures/header.png', use_column_width=True)
st.subheader('Reaction (please use KEGG IDs)')
# rxn_str = st.text_input('Reaction using KEGG ids:', value='C16688 + C00001 <=> C00095 + C00092')
rxn_str = st.text_input(
'', value='C01745 + C00004 <=> N00001 + C00003 + C00001')
# rxn_str = st.text_input('', value='C16688 + C00001 <=> C00095 + C00092')
# url = 'https://www.genome.jp/dbget-bin/www_bget?rn:R00801'
# if st.button('KEGG format example'):
# webbrowser.open_new_tab(url)
if st.checkbox('Reaction has metabolites not in KEGG'):
# st.subheader('test')
add_info = st.text_area('Additional information (id: InChI):',
'{"N00001":"InChI=1S/C14H12O/c15-14-8-4-7-13(11-14)10-9-12-5-2-1-3-6-12/h1-11,15H/b10-9+"}')
else:
add_info = '{"None":"None"}'
# session_state = SessionState.get(name="", button_sent=False)
# button_search = st.button("Search")
# if button_search:
# session_state.button_search = True
pH = st.slider('pH', min_value=0.0, max_value=14.0, value=7.0, step=0.1)
I = st.slider('Ionic strength [M]', min_value=0.0,
max_value=0.5, value=0.1, step=0.01)
if st.button("Search"):
# if session_state.button_search:
st.subheader('Reaction Equation')
st.write(rxn_str)
with st.spinner('Searching...'):
try:
novel_mets = parse_novel_molecule(json.loads(add_info))
novel_smiles = parse_novel_smiles(novel_mets)
novel_decomposed_r1 = decompse_novel_mets_rad1(novel_smiles)
novel_decomposed_r2 = decompse_novel_mets_rad2(novel_smiles)
except Exception as e:
novel_mets = None
novel_smiles = None
novel_decomposed_r1 = None
novel_decomposed_r2 = None
# novel_smiles = json.loads(add_info)
print(novel_smiles)
rxn_dict = parse_formula(rxn_str)
st.image(draw_rxn_figure(rxn_dict, db_smiles,
novel_smiles), use_column_width=True)
# st.text('Group changes:')
# st.write(parse_rule('R03921'))
# st.write(get_rxn_rule('R03921'))
# session_state.calculate = st.button('Start Calculate!')
# if session_state.calculate:
# if st.button('Start Calculate!'):
# st.text('Result:')
st.subheader('Thermodynamics')
with st.spinner('Calculating...'):
mu, std, rule_df1, rule_df2 = get_dG0(
rxn_dict, 'R00801', pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets)
st.write(r"$\Delta_r G'^{o} = %.2f \pm %.2f \ kJ/mol$" % (mu, std))
st.text('Group changes:')
st.write(rule_df1[(rule_df1.T != 0).any()])
st.write(rule_df2[(rule_df2.T != 0).any()])
if __name__ == '__main__':
main()