vumichien commited on
Commit
301359c
·
1 Parent(s): 1683de1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -306,7 +306,7 @@ def speech_to_text(video_file_path, selected_source_lang, whisper_model, min_num
306
  save_path = "output/transcript_result.csv"
307
  df_results = pd.DataFrame(objects)
308
  df_results.to_csv(save_path)
309
- return df_results, system_info, save_pathassuming
310
 
311
  except Exception as e:
312
  raise RuntimeError("Error Running inference with local model", e)
@@ -320,8 +320,8 @@ df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
320
  memory = psutil.virtual_memory()
321
  selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in video", interactive=True)
322
  selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
323
- input_min_number_speakers = gr.Number(precision=0, value=2, label="Select assumed minimum number of speakers", interactive=True)
324
- input_max_number_speakers = gr.Number(precision=0, value=2, label="Select assumed maximum number of speakers", interactive=True)
325
  system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
326
  download_transcript = gr.File(label="Download transcript")
327
  transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
 
306
  save_path = "output/transcript_result.csv"
307
  df_results = pd.DataFrame(objects)
308
  df_results.to_csv(save_path)
309
+ return df_results, system_info, save_path
310
 
311
  except Exception as e:
312
  raise RuntimeError("Error Running inference with local model", e)
 
320
  memory = psutil.virtual_memory()
321
  selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in video", interactive=True)
322
  selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
323
+ input_min_number_speakers = gr.Number(precision=0, value=2, label="Select minimum number of speakers", interactive=True)
324
+ input_max_number_speakers = gr.Number(precision=0, value=2, label="Select maximum number of speakers", interactive=True)
325
  system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
326
  download_transcript = gr.File(label="Download transcript")
327
  transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')