vtony's picture
Upload agent.py
0a72192 verified
raw
history blame
10.8 kB
import os
import time
import json
import re
import calendar
from datetime import datetime
from dotenv import load_dotenv
from langgraph.graph import StateGraph, END
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from tenacity import retry, stop_after_attempt, wait_exponential
from typing import TypedDict, Annotated, Sequence, List, Dict, Union
import operator
# Load environment variables
load_dotenv()
google_api_key = os.getenv("GOOGLE_API_KEY") or os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
raise ValueError("Missing GOOGLE_API_KEY environment variable")
# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b, error on zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Compute a mod b."""
return a % b
# --- Browser Tools ---
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia and return up to 3 relevant documents."""
try:
docs = WikipediaLoader(query=query, load_max_docs=3).load()
if not docs:
return "No Wikipedia results found."
results = []
for doc in docs:
title = doc.metadata.get('title', 'Unknown Title')
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"Wikipedia search error: {str(e)}"
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv and return up to 3 relevant papers."""
try:
docs = ArxivLoader(query=query, load_max_docs=3).load()
if not docs:
return "No arXiv papers found."
results = []
for doc in docs:
title = doc.metadata.get('Title', 'Unknown Title')
authors = ", ".join(doc.metadata.get('Authors', []))
content = doc.page_content[:2000] # Limit content length
results.append(f"Title: {title}\nAuthors: {authors}\nContent: {content}")
return "\n\n---\n\n".join(results)
except Exception as e:
return f"arXiv search error: {str(e)}"
@tool
def web_search(query: str) -> str:
"""Search the web using DuckDuckGo and return top results."""
try:
search = DuckDuckGoSearchRun()
result = search.run(query)
return f"Web search results for '{query}':\n{result[:2000]}" # Limit content length
except Exception as e:
return f"Web search error: {str(e)}"
# --- Enhanced Tools ---
@tool
def filter_by_year(items: List[Dict], year_range: str) -> List[Dict]:
"""Filter items containing year information, returning only those within specified range"""
try:
start_year, end_year = map(int, year_range.split('-'))
filtered = []
for item in items:
# Extract year from different possible keys
year = item.get('year') or item.get('release_year') or item.get('date')
if not year:
continue
# Convert to integer if possible
if isinstance(year, str) and year.isdigit():
year = int(year)
if isinstance(year, int) and start_year <= year <= end_year:
filtered.append(item)
return filtered
except Exception as e:
return f"Filter error: {str(e)}"
@tool
def extract_albums(text: str) -> List[Dict]:
"""Extract album information from text, automatically detecting names and years"""
albums = []
# Pattern 1: Album Name (Year)
pattern1 = r'\"?(.+?)\"?\s*[\(\[](\d{4})[\)\]]'
# Pattern 2: Year: Album Name
pattern2 = r'(\d{4}):\s*\"?(.+?)\"?[\n\,]'
for pattern in [pattern1, pattern2]:
matches = re.findall(pattern, text)
for match in matches:
# Handle different match group orders
if len(match) == 2:
if match[0].isdigit(): # Year comes first
year, name = match
else: # Name comes first
name, year = match
try:
year = int(year)
albums.append({"name": name.strip(), "year": year})
except ValueError:
continue
return albums
@tool
def compare_values(a: Union[str, int, float], b: Union[str, int, float]) -> str:
"""Compare two values with automatic type detection (number/date/string)"""
try:
# Attempt numeric comparison
a_num = float(a) if isinstance(a, str) else a
b_num = float(b) if isinstance(b, str) else b
if a_num == b_num:
return "equal"
return "greater" if a_num > b_num else "less"
except (ValueError, TypeError):
pass
# Attempt date comparison
date_formats = [
"%Y-%m-%d", "%d %B %Y", "%B %d, %Y", "%m/%d/%Y",
"%Y", "%B %Y", "%b %d, %Y", "%d/%m/%Y"
]
for fmt in date_formats:
try:
a_date = datetime.strptime(str(a), fmt)
b_date = datetime.strptime(str(b), fmt)
if a_date == b_date:
return "equal"
return "greater" if a_date > b_date else "less"
except ValueError:
continue
# String comparison as fallback
a_str = str(a).lower().strip()
b_str = str(b).lower().strip()
if a_str == b_str:
return "equal"
return "greater" if a_str > b_str else "less"
@tool
def count_items(items: List) -> int:
"""Count the number of items in a list"""
return len(items)
# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# --- Tool Setup ---
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
arxiv_search,
web_search,
filter_by_year, # Enhanced tool
extract_albums, # Enhanced tool
compare_values, # Enhanced tool
count_items # Enhanced tool
]
# --- Graph Builder ---
def build_graph():
# Initialize model with Gemini 2.5 Flash
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-flash",
temperature=0.3,
google_api_key=google_api_key,
max_retries=3
)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# 1. Define state structure
class AgentState(TypedDict):
messages: Annotated[Sequence, operator.add]
structured_data: dict # New field for structured information
# 2. Create graph
workflow = StateGraph(AgentState)
# 3. Define node functions
def agent_node(state: AgentState):
"""Main agent node"""
try:
# Remove forced delay to improve performance
# time.sleep(1) # Commented out for performance
# Call with retry mechanism
@retry(stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10))
def invoke_with_retry():
return llm_with_tools.invoke(state["messages"])
response = invoke_with_retry()
return {"messages": [response]}
except Exception as e:
error_type = "UNKNOWN"
if "429" in str(e):
error_type = "QUOTA_EXCEEDED"
elif "400" in str(e):
error_type = "INVALID_REQUEST"
error_msg = f"AGENT ERROR ({error_type}): {str(e)[:200]}"
return {"messages": [AIMessage(content=error_msg)]}
def tool_node(state: AgentState):
"""Tool execution node"""
last_msg = state["messages"][-1]
tool_calls = last_msg.additional_kwargs.get("tool_calls", [])
responses = []
for call in tool_calls:
tool_name = call["function"]["name"]
tool_args = call["function"].get("arguments", {})
# Find the tool
tool_func = next((t for t in tools if t.name == tool_name), None)
if not tool_func:
responses.append(f"Tool {tool_name} not available")
continue
try:
# Parse arguments
if isinstance(tool_args, str):
tool_args = json.loads(tool_args)
# Execute tool
result = tool_func.invoke(tool_args)
# Store structured results
if tool_name in ["extract_albums", "filter_by_year"]:
state["structured_data"][tool_name] = result
responses.append(f"{tool_name} result: {str(result)[:1000]}") # Limit result length
except Exception as e:
responses.append(f"{tool_name} error: {str(e)}")
tool_response_content = "\n".join(responses)
return {"messages": [AIMessage(content=tool_response_content)]}
# 4. Add nodes to workflow
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
# 5. Set entry point
workflow.set_entry_point("agent")
# 6. Define conditional edges
def should_continue(state: AgentState):
last_msg = state["messages"][-1]
# End on error
if "AGENT ERROR" in last_msg.content:
return "end"
# Go to tools if there are tool calls
if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
return "tools"
# End if final answer is present
if "FINAL ANSWER" in last_msg.content:
return "end"
# Otherwise continue with agent
return "agent"
workflow.add_conditional_edges(
"agent",
should_continue,
{
"agent": "agent",
"tools": "tools",
"end": END
}
)
# 7. Define flow after tool node
workflow.add_edge("tools", "agent")
# 8. Compile graph
return workflow.compile()
# Initialize agent graph
agent_graph = build_graph()