|
import gradio as gr |
|
import subprocess |
|
|
|
def execute_command(command: str) -> None: |
|
subprocess.run(command, check=True) |
|
|
|
def infer(): |
|
|
|
output_name = "acknowledgement_english@M030_front_neutral_level1_001@male_face" |
|
|
|
command = [ |
|
f"python", |
|
f"inference_for_demo_video.py", |
|
f"--wav_path data/audio/acknowledgement_english.m4a", |
|
f"--style_clip_path data/style_clip/3DMM/M030_front_neutral_level1_001.mat", |
|
f"--pose_path data/pose/RichardShelby_front_neutral_level1_001.mat", |
|
f"--image_path data/src_img/uncropped/male_face.png", |
|
f"--cfg_scale 1.0", |
|
f"--max_gen_len 30", |
|
f"--output_name={output_name}" |
|
] |
|
|
|
execute_command(command) |
|
|
|
return f"output_video/{output_name}.mp4" |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
run_btn = gr.Button("Run") |
|
with gr.Column(): |
|
output_video = gr.Video() |
|
|
|
run_btn.click( |
|
fn = infer, |
|
inputs = [], |
|
outputs = [output_video] |
|
) |
|
|
|
demo.launch() |