|
import gradio as gr |
|
import subprocess |
|
from moviepy.editor import VideoFileClip |
|
|
|
def convert_to_mp4_with_aac(input_path, output_path): |
|
|
|
video = VideoFileClip(input_path) |
|
|
|
|
|
video.write_videofile(output_path, codec="libx264", audio_codec="aac") |
|
|
|
return output_path |
|
|
|
def load_audio(audio_listed): |
|
return f"data/audio/{audio_listed}" |
|
|
|
def execute_command(command: str) -> None: |
|
subprocess.run(command, check=True) |
|
|
|
def infer(audio_input, image_path, emotional_style): |
|
|
|
output_name = "lipsynced_result" |
|
|
|
command = [ |
|
f"python", |
|
f"inference_for_demo_video.py", |
|
f"--wav_path={audio_input}", |
|
f"--style_clip_path=data/style_clip/3DMM/{emotional_style}", |
|
f"--pose_path=data/pose/RichardShelby_front_neutral_level1_001.mat", |
|
f"--image_path={image_path}", |
|
f"--cfg_scale=1.0", |
|
f"--max_gen_len=30", |
|
f"--output_name={output_name}" |
|
] |
|
|
|
execute_command(command) |
|
|
|
|
|
input_file = f"output_video/{output_name}.mp4" |
|
output_file = f"{output_name}.mp4" |
|
|
|
result = convert_to_mp4_with_aac(input_file, output_file) |
|
|
|
return result |
|
|
|
css=""" |
|
#col-container{ |
|
margin: 0 auto; |
|
max-width: 940px; |
|
} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.HTML(""" |
|
<h2 style="text-align: center;">DreamTalk: When Expressive Talking Head Generation Meets Diffusion Probabilistic Models</h2> |
|
<p style="text-align: center;"> |
|
DreamTalk is a diffusion-based audio-driven expressive talking head generation framework that can produce high-quality talking head videos across diverse speaking styles. DreamTalk exhibits robust performance with a diverse array of inputs, including songs, speech in multiple languages, noisy audio, and out-of-domain portraits. |
|
</p> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_path = gr.Image(label="Image", type="filepath", sources=["upload"]) |
|
audio_input = gr.Audio(label="Audio input", type="filepath", sources=["upload"], value="data/audio/acknowledgement_english.m4a") |
|
with gr.Row(): |
|
audio_list = gr.Dropdown( |
|
label="Choose an audio (optional)", |
|
choices=[ |
|
"German1.wav", "German2.wav", "German3.wav", "German4.wav", |
|
"acknowledgement_chinese.m4a", "acknowledgement_english.m4a", |
|
"chinese1_haierlizhi.wav", "chinese2_guanyu.wav", |
|
"french1.wav", "french2.wav", "french3.wav", |
|
"italian1.wav", "italian2.wav", "italian3.wav", |
|
"japan1.wav", "japan2.wav", "japan3.wav", |
|
"korean1.wav", "korean2.wav", "korean3.wav", |
|
"noisy_audio_cafeter_snr_0.wav", "noisy_audio_meeting_snr_0.wav", "noisy_audio_meeting_snr_10.wav", "noisy_audio_meeting_snr_20.wav", "noisy_audio_narrative.wav", "noisy_audio_office_snr_0.wav", "out_of_domain_narrative.wav", |
|
"spanish1.wav", "spanish2.wav", "spanish3.wav" |
|
], |
|
value = "acknowledgement_english.m4a" |
|
) |
|
audio_list.change( |
|
fn = load_audio, |
|
inputs = [audio_list], |
|
outputs = [audio_input] |
|
) |
|
emotional_style = gr.Dropdown( |
|
label = "emotional style", |
|
choices = [ |
|
"M030_front_angry_level3_001.mat", |
|
"M030_front_contempt_level3_001.mat", |
|
"M030_front_disgusted_level3_001.mat", |
|
"M030_front_fear_level3_001.mat", |
|
"M030_front_happy_level3_001.mat", |
|
"M030_front_neutral_level1_001.mat", |
|
"M030_front_sad_level3_001.mat", |
|
"M030_front_surprised_level3_001.mat", |
|
"W009_front_angry_level3_001.mat", |
|
"W009_front_contempt_level3_001.mat", |
|
"W009_front_disgusted_level3_001.mat", |
|
"W009_front_fear_level3_001.mat", |
|
"W009_front_happy_level3_001.mat", |
|
"W009_front_neutral_level1_001.mat", |
|
"W009_front_sad_level3_001.mat", |
|
"W009_front_surprised_level3_001.mat", |
|
"W011_front_angry_level3_001.mat", |
|
"W011_front_contempt_level3_001.mat", |
|
"W011_front_disgusted_level3_001.mat", |
|
"W011_front_fear_level3_001.mat", |
|
"W011_front_happy_level3_001.mat", |
|
"W011_front_neutral_level1_001.mat", |
|
"W011_front_sad_level3_001.mat", |
|
"W011_front_surprised_level3_001.mat" |
|
], |
|
value = "M030_front_neutral_level1_001.mat" |
|
) |
|
gr.Examples( |
|
examples = [ |
|
"data/src_img/uncropped/face3.png", |
|
"data/src_img/uncropped/male_face.png", |
|
"data/src_img/uncropped/uncut_src_img.jpg", |
|
"data/src_img/cropped/chpa5.png", |
|
"data/src_img/cropped/cut_img.png", |
|
"data/src_img/cropped/f30.png", |
|
"data/src_img/cropped/menglu2.png", |
|
"data/src_img/cropped/nscu2.png", |
|
"data/src_img/cropped/zp1.png", |
|
"data/src_img/cropped/zt12.png" |
|
], |
|
inputs=[image_path], |
|
examples_per_page=5 |
|
) |
|
run_btn = gr.Button("Run") |
|
with gr.Column(): |
|
output_video = gr.Video(format="mp4") |
|
gr.HTML(""" |
|
<img src="https://github.com/ali-vilab/dreamtalk/raw/main/media/teaser.gif" style="margin: 0 auto;border-radius: 10px;" /> |
|
""") |
|
|
|
run_btn.click( |
|
fn = infer, |
|
inputs = [audio_input, image_path, emotional_style], |
|
outputs = [output_video] |
|
) |
|
|
|
demo.queue().launch() |