nmed2024 / adrd /model /imaging_model.py
xf3227's picture
ok
6fc43ab
raw
history blame
32.3 kB
__all__ = ['Transformer']
import wandb
import torch
import numpy as np
import functools
import inspect
import monai
import random
from tqdm import tqdm
from functools import wraps
from sklearn.base import BaseEstimator
from sklearn.utils.validation import check_is_fitted
from sklearn.model_selection import train_test_split
from scipy.special import expit
from copy import deepcopy
from contextlib import suppress
from typing import Any, Self, Type
Tensor = Type[torch.Tensor]
Module = Type[torch.nn.Module]
from torch.utils.data import DataLoader
from monai.utils.type_conversion import convert_to_tensor
from monai.transforms import (
LoadImaged,
Compose,
CropForegroundd,
CopyItemsd,
SpatialPadd,
EnsureChannelFirstd,
Spacingd,
OneOf,
ScaleIntensityRanged,
HistogramNormalized,
RandSpatialCropSamplesd,
RandSpatialCropd,
CenterSpatialCropd,
RandCoarseDropoutd,
RandCoarseShuffled,
Resized,
)
# for DistributedDataParallel
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from .. import nn
from ..utils.misc import ProgressBar
from ..utils.misc import get_metrics_multitask, print_metrics_multitask
from ..utils.misc import convert_args_kwargs_to_kwargs
import warnings
warnings.filterwarnings("ignore")
def _manage_ctx_fit(func):
''' ... '''
@wraps(func)
def wrapper(*args, **kwargs):
# format arguments
kwargs = convert_args_kwargs_to_kwargs(func, args, kwargs)
if kwargs['self']._device_ids is None:
return func(**kwargs)
else:
# change primary device
default_device = kwargs['self'].device
kwargs['self'].device = kwargs['self']._device_ids[0]
rtn = func(**kwargs)
kwargs['self'].to(default_device)
return rtn
return wrapper
def collate_handle_corrupted(samples_list, dataset, labels, dtype=torch.half):
# print(len(samples_list))
orig_len = len(samples_list)
# for the loss to be consistent, we drop samples with NaN values in any of their corresponding crops
for i, s in enumerate(samples_list):
ic(s is None)
if s is None:
continue
samples_list = list(filter(lambda x: x is not None, samples_list))
if len(samples_list) == 0:
ic('recursive call')
return collate_handle_corrupted([dataset[random.randint(0, len(dataset)-1)] for _ in range(orig_len)], dataset, labels)
# collated_images = torch.stack([convert_to_tensor(s["image"]) for s in samples_list])
try:
if "image" in samples_list[0]:
samples_list = [s for s in samples_list if not torch.isnan(s["image"]).any()]
# print('samples list: ', len(samples_list))
collated_images = torch.stack([convert_to_tensor(s["image"]) for s in samples_list])
# print("here1")
collated_labels = {k: torch.Tensor([s["label"][k] if s["label"][k] is not None else 0 for s in samples_list]) for k in labels}
# print("here2")
collated_mask = {k: torch.Tensor([1 if s["label"][k] is not None else 0 for s in samples_list]) for k in labels}
# print("here3")
return {"image": collated_images,
"label": collated_labels,
"mask": collated_mask}
except:
return collate_handle_corrupted([dataset[random.randint(0, len(dataset)-1)] for _ in range(orig_len)], dataset, labels)
def get_backend(img_backend):
if img_backend == 'C3D':
return nn.C3D
elif img_backend == 'DenseNet':
return nn.DenseNet
class ImagingModel(BaseEstimator):
''' ... '''
def __init__(self,
tgt_modalities: list[str],
label_fractions: dict[str, float],
num_epochs: int = 32,
batch_size: int = 8,
batch_size_multiplier: int = 1,
lr: float = 1e-2,
weight_decay: float = 0.0,
beta: float = 0.9999,
gamma: float = 2.0,
bn_size: int = 4,
growth_rate: int = 12,
block_config: tuple = (3, 3, 3),
compression: float = 0.5,
num_init_features: int = 16,
drop_rate: float = 0.2,
criterion: str | None = None,
device: str = 'cpu',
cuda_devices: list = [1],
ckpt_path: str = '/home/skowshik/ADRD_repo/adrd_tool/dev/ckpt/ckpt.pt',
load_from_ckpt: bool = True,
save_intermediate_ckpts: bool = False,
data_parallel: bool = False,
verbose: int = 0,
img_backend: str | None = None,
label_distribution: dict = {},
wandb_ = 1,
_device_ids: list | None = None,
_dataloader_num_workers: int = 4,
_amp_enabled: bool = False,
) -> None:
''' ... '''
# for multiprocessing
self._rank = 0
self._lock = None
# positional parameters
self.tgt_modalities = tgt_modalities
# training parameters
self.label_fractions = label_fractions
self.num_epochs = num_epochs
self.batch_size = batch_size
self.batch_size_multiplier = batch_size_multiplier
self.lr = lr
self.weight_decay = weight_decay
self.beta = beta
self.gamma = gamma
self.bn_size = bn_size
self.growth_rate = growth_rate
self.block_config = block_config
self.compression = compression
self.num_init_features = num_init_features
self.drop_rate = drop_rate
self.criterion = criterion
self.device = device
self.cuda_devices = cuda_devices
self.ckpt_path = ckpt_path
self.load_from_ckpt = load_from_ckpt
self.save_intermediate_ckpts = save_intermediate_ckpts
self.data_parallel = data_parallel
self.verbose = verbose
self.img_backend = img_backend
self.label_distribution = label_distribution
self.wandb_ = wandb_
self._device_ids = _device_ids
self._dataloader_num_workers = _dataloader_num_workers
self._amp_enabled = _amp_enabled
self.scaler = torch.cuda.amp.GradScaler()
@_manage_ctx_fit
def fit(self, trn_list, vld_list, img_train_trans=None, img_vld_trans=None) -> Self:
# def fit(self, x, y) -> Self:
''' ... '''
# start a new wandb run to track this script
if self.wandb_ == 1:
wandb.init(
# set the wandb project where this run will be logged
project="ADRD_main",
# track hyperparameters and run metadata
config={
"Model": "DenseNet",
"Loss": 'Focalloss',
"EMB": "ALL_EMB",
"epochs": 256,
}
)
wandb.run.log_code("/home/skowshik/ADRD_repo/pipeline_v1_main/adrd_tool")
else:
wandb.init(mode="disabled")
# for PyTorch computational efficiency
torch.set_num_threads(1)
print(self.criterion)
# initialize neural network
self._init_net()
# for k, info in self.src_modalities.items():
# if info['type'] == 'imaging' and self.img_net != 'EMB':
# info['shape'] = (1,) + (self.img_size,) * 3
# info['img_shape'] = (1,) + (self.img_size,) * 3
# print(info['shape'])
# initialize dataloaders
# ldr_trn, ldr_vld = self._init_dataloader(x, y)
# ldr_trn, ldr_vld = self._init_dataloader(x_trn, x_vld, y_trn, y_vld)
ldr_trn, ldr_vld = self._init_dataloader(trn_list, vld_list, img_train_trans=img_train_trans, img_vld_trans=img_vld_trans)
# initialize optimizer and scheduler
if not self.load_from_ckpt:
self.optimizer = self._init_optimizer()
self.scheduler = self._init_scheduler(self.optimizer)
# gradient scaler for AMP
if self._amp_enabled:
self.scaler = torch.cuda.amp.GradScaler()
# initialize focal loss function
self.loss_fn = {}
for k in self.tgt_modalities:
if self.label_fractions[k] >= 0.3:
alpha = -1
else:
alpha = pow((1 - self.label_fractions[k]), 2)
# alpha = -1
self.loss_fn[k] = nn.SigmoidFocalLoss(
alpha = alpha,
gamma = self.gamma,
reduction = 'none'
)
# to record the best validation performance criterion
if self.criterion is not None:
best_crit = None
best_crit_AUPR = None
# progress bar for epoch loops
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch = tqdm(
desc = 'Rank {:02d}'.format(self._rank),
total = self.num_epochs,
position = self._rank,
ascii = True,
leave = False,
bar_format='{l_bar}{r_bar}'
)
# Define a hook function to print and store the gradient of a layer
def print_and_store_grad(grad, grad_list):
grad_list.append(grad)
# print(grad)
# grad_list = []
# self.net_.modules_emb_src['img_MRI_T1'].downsample[0].weight.register_hook(lambda grad: print_and_store_grad(grad, grad_list))
# lambda_coeff = 0.0001
# margin_loss = torch.nn.MarginRankingLoss(reduction='sum', margin=0.05)
# training loop
for epoch in range(self.start_epoch, self.num_epochs):
met_trn = self.train_one_epoch(ldr_trn, epoch)
met_vld = self.validate_one_epoch(ldr_vld, epoch)
print(self.ckpt_path.split('/')[-1])
# save the model if it has the best validation performance criterion by far
if self.criterion is None: continue
# is current criterion better than previous best?
curr_crit = np.mean([met_vld[i][self.criterion] for i in range(len(self.tgt_modalities))])
curr_crit_AUPR = np.mean([met_vld[i]["AUC (PR)"] for i in range(len(self.tgt_modalities))])
# AUROC
if best_crit is None or np.isnan(best_crit):
is_better = True
elif self.criterion == 'Loss' and best_crit >= curr_crit:
is_better = True
elif self.criterion != 'Loss' and best_crit <= curr_crit :
is_better = True
else:
is_better = False
# AUPR
if best_crit_AUPR is None or np.isnan(best_crit_AUPR):
is_better_AUPR = True
elif best_crit_AUPR <= curr_crit_AUPR :
is_better_AUPR = True
else:
is_better_AUPR = False
# update best criterion
if is_better_AUPR:
best_crit_AUPR = curr_crit_AUPR
if self.save_intermediate_ckpts:
print(f"Saving the model to {self.ckpt_path[:-3]}_AUPR.pt...")
self.save(self.ckpt_path[:-3]+"_AUPR.pt", epoch)
if is_better:
best_crit = curr_crit
best_state_dict = deepcopy(self.net_.state_dict())
if self.save_intermediate_ckpts:
print(f"Saving the model to {self.ckpt_path}...")
self.save(self.ckpt_path, epoch)
if self.verbose > 2:
print('Best {}: {}'.format(self.criterion, best_crit))
print('Best {}: {}'.format('AUC (PR)', best_crit_AUPR))
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch.update(1)
pbr_epoch.refresh()
return self
def train_one_epoch(self, ldr_trn, epoch):
# progress bar for batch loops
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_trn.dataset), 'Epoch {:03d} (TRN)'.format(epoch))
torch.set_grad_enabled(True)
self.net_.train()
scores_trn, y_true_trn, y_mask_trn = [], [], []
losses_trn = [[] for _ in self.tgt_modalities]
iters = len(ldr_trn)
print(iters)
for n_iter, batch_data in enumerate(ldr_trn):
# if len(batch_data["image"]) < self.batch_size:
# continue
x_batch = batch_data["image"].to(self.device, non_blocking=True)
y_batch = {k: v.to(self.device, non_blocking=True) for k,v in batch_data["label"].items()}
y_mask = {k: v.to(self.device, non_blocking=True) for k,v in batch_data["mask"].items()}
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled,
):
outputs = self.net_(x_batch, shap=False)
# print(outputs.shape)
# calculate multitask loss
loss = 0
for i, k in enumerate(self.tgt_modalities):
loss_task = self.loss_fn[k](outputs[k], y_batch[k])
msk_loss_task = loss_task * y_mask[k]
msk_loss_mean = msk_loss_task.sum() / y_mask[k].sum()
loss += msk_loss_mean
losses_trn[i] += msk_loss_task.detach().cpu().numpy().tolist()
# backward
if self._amp_enabled:
self.scaler.scale(loss).backward()
else:
loss.backward()
# print(len(grad_list), len(grad_list[-1]))
# print(f"Gradient at {n_iter}: {grad_list[-1][0]}")
# update parameters
if n_iter != 0 and n_iter % self.batch_size_multiplier == 0:
if self._amp_enabled:
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
else:
self.optimizer.step()
self.optimizer.zero_grad()
# set self.scheduler
self.scheduler.step(epoch + n_iter / iters)
# print(f"Weight: {self.net_.module.features[0].weight[0]}")
''' TODO: change array to dictionary later '''
outputs = torch.stack(list(outputs.values()), dim=1)
y_batch = torch.stack(list(y_batch.values()), dim=1)
y_mask = torch.stack(list(y_mask.values()), dim=1)
# save outputs to evaluate performance later
scores_trn.append(outputs.detach().to(torch.float).cpu())
y_true_trn.append(y_batch.cpu())
y_mask_trn.append(y_mask.cpu())
# log metrics to wandb
# update progress bar
if self.verbose > 1:
batch_size = len(x_batch)
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# clear cuda cache
if "cuda" in self.device:
torch.cuda.empty_cache()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# # set self.scheduler
# self.scheduler.step()
# calculate and print training performance metrics
scores_trn = torch.cat(scores_trn)
y_true_trn = torch.cat(y_true_trn)
y_mask_trn = torch.cat(y_mask_trn)
y_pred_trn = (scores_trn > 0).to(torch.int)
y_prob_trn = torch.sigmoid(scores_trn)
met_trn = get_metrics_multitask(
y_true_trn.numpy(),
y_pred_trn.numpy(),
y_prob_trn.numpy(),
y_mask_trn.numpy()
)
# add loss to metrics
for i in range(len(self.tgt_modalities)):
met_trn[i]['Loss'] = np.mean(losses_trn[i])
wandb.log({f"Train loss {list(self.tgt_modalities)[i]}": met_trn[i]['Loss'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train Balanced Accuracy {list(self.tgt_modalities)[i]}": met_trn[i]['Balanced Accuracy'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train AUC (ROC) {list(self.tgt_modalities)[i]}": met_trn[i]['AUC (ROC)'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train AUPR {list(self.tgt_modalities)[i]}": met_trn[i]['AUC (PR)'] for i in range(len(self.tgt_modalities))}, step=epoch)
if self.verbose > 2:
print_metrics_multitask(met_trn)
return met_trn
# @torch.no_grad()
def validate_one_epoch(self, ldr_vld, epoch):
# progress bar for validation
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_vld.dataset), 'Epoch {:03d} (VLD)'.format(epoch))
# set model to validation mode
torch.set_grad_enabled(False)
self.net_.eval()
scores_vld, y_true_vld, y_mask_vld = [], [], []
losses_vld = [[] for _ in self.tgt_modalities]
for batch_data in ldr_vld:
# if len(batch_data["image"]) < self.batch_size:
# continue
x_batch = batch_data["image"].to(self.device, non_blocking=True)
y_batch = {k: v.to(self.device, non_blocking=True) for k,v in batch_data["label"].items()}
y_mask = {k: v.to(self.device, non_blocking=True) for k,v in batch_data["mask"].items()}
# forward
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled
):
outputs = self.net_(x_batch, shap=False)
# calculate multitask loss
for i, k in enumerate(self.tgt_modalities):
loss_task = self.loss_fn[k](outputs[k], y_batch[k])
msk_loss_task = loss_task * y_mask[k]
losses_vld[i] += msk_loss_task.detach().cpu().numpy().tolist()
''' TODO: change array to dictionary later '''
outputs = torch.stack(list(outputs.values()), dim=1)
y_batch = torch.stack(list(y_batch.values()), dim=1)
y_mask = torch.stack(list(y_mask.values()), dim=1)
# save outputs to evaluate performance later
scores_vld.append(outputs.detach().to(torch.float).cpu())
y_true_vld.append(y_batch.cpu())
y_mask_vld.append(y_mask.cpu())
# update progress bar
if self.verbose > 1:
batch_size = len(x_batch)
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# clear cuda cache
if "cuda" in self.device:
torch.cuda.empty_cache()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# calculate and print validation performance metrics
scores_vld = torch.cat(scores_vld)
y_true_vld = torch.cat(y_true_vld)
y_mask_vld = torch.cat(y_mask_vld)
y_pred_vld = (scores_vld > 0).to(torch.int)
y_prob_vld = torch.sigmoid(scores_vld)
met_vld = get_metrics_multitask(
y_true_vld.numpy(),
y_pred_vld.numpy(),
y_prob_vld.numpy(),
y_mask_vld.numpy()
)
# add loss to metrics
for i in range(len(self.tgt_modalities)):
met_vld[i]['Loss'] = np.mean(losses_vld[i])
wandb.log({f"Validation loss {list(self.tgt_modalities)[i]}": met_vld[i]['Loss'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation Balanced Accuracy {list(self.tgt_modalities)[i]}": met_vld[i]['Balanced Accuracy'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation AUC (ROC) {list(self.tgt_modalities)[i]}": met_vld[i]['AUC (ROC)'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation AUPR {list(self.tgt_modalities)[i]}": met_vld[i]['AUC (PR)'] for i in range(len(self.tgt_modalities))}, step=epoch)
if self.verbose > 2:
print_metrics_multitask(met_vld)
return met_vld
def save(self, filepath: str, epoch: int = 0) -> None:
''' ... '''
check_is_fitted(self)
if self.data_parallel:
state_dict = self.net_.module.state_dict()
else:
state_dict = self.net_.state_dict()
# attach model hyper parameters
state_dict['tgt_modalities'] = self.tgt_modalities
state_dict['optimizer'] = self.optimizer
state_dict['bn_size'] = self.bn_size
state_dict['growth_rate'] = self.growth_rate
state_dict['block_config'] = self.block_config
state_dict['compression'] = self.compression
state_dict['num_init_features'] = self.num_init_features
state_dict['drop_rate'] = self.drop_rate
state_dict['epoch'] = epoch
if self.scaler is not None:
state_dict['scaler'] = self.scaler.state_dict()
if self.label_distribution:
state_dict['label_distribution'] = self.label_distribution
torch.save(state_dict, filepath)
def load(self, filepath: str, map_location: str = 'cpu', how='latest') -> None:
''' ... '''
# load state_dict
if how == 'latest':
if torch.load(filepath)['epoch'] > torch.load(f'{filepath[:-3]}_AUPR.pt')['epoch']:
print("Loading model saved using AUROC")
state_dict = torch.load(filepath, map_location=map_location)
else:
print("Loading model saved using AUPR")
state_dict = torch.load(f'{filepath[:-3]}_AUPR.pt', map_location=map_location)
else:
state_dict = torch.load(filepath, map_location=map_location)
# load data modalities
self.tgt_modalities: dict[str, dict[str, Any]] = state_dict.pop('tgt_modalities')
if 'label_distribution' in state_dict:
self.label_distribution: dict[str, dict[int, int]] = state_dict.pop('label_distribution')
if 'optimizer' in state_dict:
self.optimizer = state_dict.pop('optimizer')
if 'bn_size' in state_dict:
self.bn_size = state_dict.pop('bn_size')
if 'growth_rate' in state_dict:
self.growth_rate = state_dict.pop('growth_rate')
if 'block_config' in state_dict:
self.block_config = state_dict.pop('block_config')
if 'compression' in state_dict:
self.compression = state_dict.pop('compression')
if 'num_init_features' in state_dict:
self.num_init_features = state_dict.pop('num_init_features')
if 'drop_rate' in state_dict:
self.drop_rate = state_dict.pop('drop_rate')
if 'epoch' in state_dict:
self.start_epoch = state_dict.pop('epoch')
print(f'Epoch: {self.start_epoch}')
# initialize model
self.net_ = get_backend(self.img_backend)(
tgt_modalities = self.tgt_modalities,
bn_size = self.bn_size,
growth_rate=self.growth_rate,
block_config=self.block_config,
compression=self.compression,
num_init_features=self.num_init_features,
drop_rate=self.drop_rate,
load_from_ckpt=self.load_from_ckpt
)
print(self.net_)
if 'scaler' in state_dict and state_dict['scaler']:
self.scaler.load_state_dict(state_dict.pop('scaler'))
self.net_.load_state_dict(state_dict)
check_is_fitted(self)
self.net_.to(self.device)
def to(self, device: str) -> Self:
''' Mount model to the given device. '''
self.device = device
if hasattr(self, 'model'): self.net_ = self.net_.to(device)
return self
@classmethod
def from_ckpt(cls, filepath: str, device='cpu', img_backend=None, load_from_ckpt=True, how='latest') -> Self:
''' ... '''
obj = cls(None, None, None,device=device)
if device == 'cuda':
obj.device = "{}:{}".format(obj.device, str(obj.cuda_devices[0]))
print(obj.device)
obj.img_backend=img_backend
obj.load_from_ckpt = load_from_ckpt
obj.load(filepath, map_location=obj.device, how=how)
return obj
def _init_net(self):
""" ... """
self.start_epoch = 0
# set the device for use
if self.device == 'cuda':
self.device = "{}:{}".format(self.device, str(self.cuda_devices[0]))
# self.load(self.ckpt_path, map_location=self.device)
# print("Loading model from checkpoint...")
# self.load(self.ckpt_path, map_location=self.device)
if self.load_from_ckpt:
try:
print("Loading model from checkpoint...")
self.load(self.ckpt_path, map_location=self.device)
except:
print("Cannot load from checkpoint. Initializing new model...")
self.load_from_ckpt = False
if not self.load_from_ckpt:
self.net_ = get_backend(self.img_backend)(
tgt_modalities = self.tgt_modalities,
bn_size = self.bn_size,
growth_rate=self.growth_rate,
block_config=self.block_config,
compression=self.compression,
num_init_features=self.num_init_features,
drop_rate=self.drop_rate,
load_from_ckpt=self.load_from_ckpt
)
# # intialize model parameters using xavier_uniform
# for p in self.net_.parameters():
# if p.dim() > 1:
# torch.nn.init.xavier_uniform_(p)
self.net_.to(self.device)
# Initialize the number of GPUs
if self.data_parallel and torch.cuda.device_count() > 1:
print("Available", torch.cuda.device_count(), "GPUs!")
self.net_ = torch.nn.DataParallel(self.net_, device_ids=self.cuda_devices)
# return net
def _init_dataloader(self, trn_list, vld_list, img_train_trans=None, img_vld_trans=None):
# def _init_dataloader(self, x, y):
""" ... """
# # split dataset
# x_trn, x_vld, y_trn, y_vld = train_test_split(
# x, y, test_size = 0.2, random_state = 0,
# )
# # initialize dataset and dataloader
# dat_trn = CNNTrainingValidationDataset(
# x_trn, y_trn,
# self.tgt_modalities,
# img_transform=img_train_trans,
# )
# dat_vld = CNNTrainingValidationDataset(
# x_vld, y_vld,
# self.tgt_modalities,
# img_transform=img_vld_trans,
# )
dat_trn = monai.data.Dataset(data=trn_list, transform=img_train_trans)
dat_vld = monai.data.Dataset(data=vld_list, transform=img_vld_trans)
collate_fn_trn = functools.partial(collate_handle_corrupted, dataset=dat_trn, dtype=torch.FloatTensor, labels=self.tgt_modalities)
collate_fn_vld = functools.partial(collate_handle_corrupted, dataset=dat_vld, dtype=torch.FloatTensor, labels=self.tgt_modalities)
ldr_trn = DataLoader(
dataset = dat_trn,
batch_size = self.batch_size,
shuffle = True,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = collate_fn_trn,
# pin_memory = True
)
ldr_vld = DataLoader(
dataset = dat_vld,
batch_size = self.batch_size,
shuffle = False,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = collate_fn_vld,
# pin_memory = True
)
return ldr_trn, ldr_vld
def _init_optimizer(self):
""" ... """
params = list(self.net_.parameters())
# for p in params:
# print(p.requires_grad)
return torch.optim.AdamW(
params,
lr = self.lr,
betas = (0.9, 0.98),
weight_decay = self.weight_decay
)
def _init_scheduler(self, optimizer):
""" ... """
# return torch.optim.lr_scheduler.OneCycleLR(
# optimizer = optimizer,
# max_lr = self.lr,
# total_steps = self.num_epochs,
# verbose = (self.verbose > 2)
# )
# return torch.optim.lr_scheduler.CosineAnnealingLR(
# optimizer=optimizer,
# T_max=64,
# verbose=(self.verbose > 2)
# )
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer=optimizer,
T_0=64,
T_mult=2,
eta_min = 0,
verbose=(self.verbose > 2)
)
def _init_loss_func(self,
num_per_cls: dict[str, tuple[int, int]],
) -> dict[str, Module]:
""" ... """
return {k: nn.SigmoidFocalLossBeta(
beta = self.beta,
gamma = self.gamma,
num_per_cls = num_per_cls[k],
reduction = 'none',
) for k in self.tgt_modalities}
def _proc_fit(self):
""" ... """
def _init_test_dataloader(self, batch_size, tst_list, img_tst_trans=None):
# input validation
check_is_fitted(self)
print(self.device)
# for PyTorch computational efficiency
torch.set_num_threads(1)
# set model to eval mode
torch.set_grad_enabled(False)
self.net_.eval()
dat_tst = monai.data.Dataset(data=tst_list, transform=img_tst_trans)
collate_fn_tst = functools.partial(collate_handle_corrupted, dataset=dat_tst, dtype=torch.FloatTensor, labels=self.tgt_modalities)
# print(collate_fn_tst)
ldr_tst = DataLoader(
dataset = dat_tst,
batch_size = batch_size,
shuffle = False,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = collate_fn_tst,
# pin_memory = True
)
return ldr_tst
def predict_logits(self,
ldr_tst: Any | None = None,
) -> list[dict[str, float]]:
# run model and collect results
logits: list[dict[str, float]] = []
for batch_data in tqdm(ldr_tst):
# print(batch_data["image"])
if len(batch_data) == 0:
continue
x_batch = batch_data["image"].to(self.device, non_blocking=True)
outputs = self.net_(x_batch, shap=False)
# convert output from dict-of-list to list of dict, then append
tmp = {k: outputs[k].tolist() for k in self.tgt_modalities}
tmp = [{k: tmp[k][i] for k in self.tgt_modalities} for i in range(len(next(iter(tmp.values()))))]
logits += tmp
return logits
def predict_proba(self,
ldr_tst: Any | None = None,
temperature: float = 1.0,
) -> list[dict[str, float]]:
''' ... '''
logits = self.predict_logits(ldr_tst)
print("got logits")
return logits, [{k: expit(smp[k] / temperature) for k in self.tgt_modalities} for smp in logits]
def predict(self,
ldr_tst: Any | None = None,
) -> list[dict[str, int]]:
''' ... '''
logits, proba = self.predict_proba(ldr_tst)
print("got proba")
return logits, proba, [{k: int(smp[k] > 0.5) for k in self.tgt_modalities} for smp in proba]