|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- text-embedding |
|
- embeddings |
|
- information-retrieval |
|
- beir |
|
- text-classification |
|
- language-model |
|
- text-clustering |
|
- text-semantic-similarity |
|
- text-evaluation |
|
- prompt-retrieval |
|
- text-reranking |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- t5 |
|
- English |
|
- Sentence Similarity |
|
- natural_questions |
|
- ms_marco |
|
- fever |
|
- hotpot_qa |
|
- mteb |
|
language: en |
|
inference: false |
|
license: apache-2.0 |
|
model-index: |
|
- name: INSTRUCTOR |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 88.13432835820896 |
|
- type: ap |
|
value: 59.298209334395665 |
|
- type: f1 |
|
value: 83.31769058643586 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 91.526375 |
|
- type: ap |
|
value: 88.16327709705504 |
|
- type: f1 |
|
value: 91.51095801287843 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 47.856 |
|
- type: f1 |
|
value: 45.41490917650942 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 31.223 |
|
- type: map_at_10 |
|
value: 47.947 |
|
- type: map_at_100 |
|
value: 48.742000000000004 |
|
- type: map_at_1000 |
|
value: 48.745 |
|
- type: map_at_3 |
|
value: 43.137 |
|
- type: map_at_5 |
|
value: 45.992 |
|
- type: mrr_at_1 |
|
value: 32.432 |
|
- type: mrr_at_10 |
|
value: 48.4 |
|
- type: mrr_at_100 |
|
value: 49.202 |
|
- type: mrr_at_1000 |
|
value: 49.205 |
|
- type: mrr_at_3 |
|
value: 43.551 |
|
- type: mrr_at_5 |
|
value: 46.467999999999996 |
|
- type: ndcg_at_1 |
|
value: 31.223 |
|
- type: ndcg_at_10 |
|
value: 57.045 |
|
- type: ndcg_at_100 |
|
value: 60.175 |
|
- type: ndcg_at_1000 |
|
value: 60.233000000000004 |
|
- type: ndcg_at_3 |
|
value: 47.171 |
|
- type: ndcg_at_5 |
|
value: 52.322 |
|
- type: precision_at_1 |
|
value: 31.223 |
|
- type: precision_at_10 |
|
value: 8.599 |
|
- type: precision_at_100 |
|
value: 0.991 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 19.63 |
|
- type: precision_at_5 |
|
value: 14.282 |
|
- type: recall_at_1 |
|
value: 31.223 |
|
- type: recall_at_10 |
|
value: 85.989 |
|
- type: recall_at_100 |
|
value: 99.075 |
|
- type: recall_at_1000 |
|
value: 99.502 |
|
- type: recall_at_3 |
|
value: 58.89 |
|
- type: recall_at_5 |
|
value: 71.408 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 43.1621946393635 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 32.56417132407894 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 64.29539304390207 |
|
- type: mrr |
|
value: 76.44484017060196 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 84.38746499431112 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 78.51298701298701 |
|
- type: f1 |
|
value: 77.49041754069235 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 37.61848554098577 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 31.32623280148178 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 35.803000000000004 |
|
- type: map_at_10 |
|
value: 48.848 |
|
- type: map_at_100 |
|
value: 50.5 |
|
- type: map_at_1000 |
|
value: 50.602999999999994 |
|
- type: map_at_3 |
|
value: 45.111000000000004 |
|
- type: map_at_5 |
|
value: 47.202 |
|
- type: mrr_at_1 |
|
value: 44.635000000000005 |
|
- type: mrr_at_10 |
|
value: 55.593 |
|
- type: mrr_at_100 |
|
value: 56.169999999999995 |
|
- type: mrr_at_1000 |
|
value: 56.19499999999999 |
|
- type: mrr_at_3 |
|
value: 53.361999999999995 |
|
- type: mrr_at_5 |
|
value: 54.806999999999995 |
|
- type: ndcg_at_1 |
|
value: 44.635000000000005 |
|
- type: ndcg_at_10 |
|
value: 55.899 |
|
- type: ndcg_at_100 |
|
value: 60.958 |
|
- type: ndcg_at_1000 |
|
value: 62.302 |
|
- type: ndcg_at_3 |
|
value: 51.051 |
|
- type: ndcg_at_5 |
|
value: 53.351000000000006 |
|
- type: precision_at_1 |
|
value: 44.635000000000005 |
|
- type: precision_at_10 |
|
value: 10.786999999999999 |
|
- type: precision_at_100 |
|
value: 1.6580000000000001 |
|
- type: precision_at_1000 |
|
value: 0.213 |
|
- type: precision_at_3 |
|
value: 24.893 |
|
- type: precision_at_5 |
|
value: 17.740000000000002 |
|
- type: recall_at_1 |
|
value: 35.803000000000004 |
|
- type: recall_at_10 |
|
value: 68.657 |
|
- type: recall_at_100 |
|
value: 89.77199999999999 |
|
- type: recall_at_1000 |
|
value: 97.67 |
|
- type: recall_at_3 |
|
value: 54.066 |
|
- type: recall_at_5 |
|
value: 60.788 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 33.706 |
|
- type: map_at_10 |
|
value: 44.896 |
|
- type: map_at_100 |
|
value: 46.299 |
|
- type: map_at_1000 |
|
value: 46.44 |
|
- type: map_at_3 |
|
value: 41.721000000000004 |
|
- type: map_at_5 |
|
value: 43.486000000000004 |
|
- type: mrr_at_1 |
|
value: 41.592 |
|
- type: mrr_at_10 |
|
value: 50.529 |
|
- type: mrr_at_100 |
|
value: 51.22 |
|
- type: mrr_at_1000 |
|
value: 51.258 |
|
- type: mrr_at_3 |
|
value: 48.205999999999996 |
|
- type: mrr_at_5 |
|
value: 49.528 |
|
- type: ndcg_at_1 |
|
value: 41.592 |
|
- type: ndcg_at_10 |
|
value: 50.77199999999999 |
|
- type: ndcg_at_100 |
|
value: 55.383 |
|
- type: ndcg_at_1000 |
|
value: 57.288 |
|
- type: ndcg_at_3 |
|
value: 46.324 |
|
- type: ndcg_at_5 |
|
value: 48.346000000000004 |
|
- type: precision_at_1 |
|
value: 41.592 |
|
- type: precision_at_10 |
|
value: 9.516 |
|
- type: precision_at_100 |
|
value: 1.541 |
|
- type: precision_at_1000 |
|
value: 0.2 |
|
- type: precision_at_3 |
|
value: 22.399 |
|
- type: precision_at_5 |
|
value: 15.770999999999999 |
|
- type: recall_at_1 |
|
value: 33.706 |
|
- type: recall_at_10 |
|
value: 61.353 |
|
- type: recall_at_100 |
|
value: 80.182 |
|
- type: recall_at_1000 |
|
value: 91.896 |
|
- type: recall_at_3 |
|
value: 48.204 |
|
- type: recall_at_5 |
|
value: 53.89699999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 44.424 |
|
- type: map_at_10 |
|
value: 57.169000000000004 |
|
- type: map_at_100 |
|
value: 58.202 |
|
- type: map_at_1000 |
|
value: 58.242000000000004 |
|
- type: map_at_3 |
|
value: 53.825 |
|
- type: map_at_5 |
|
value: 55.714 |
|
- type: mrr_at_1 |
|
value: 50.470000000000006 |
|
- type: mrr_at_10 |
|
value: 60.489000000000004 |
|
- type: mrr_at_100 |
|
value: 61.096 |
|
- type: mrr_at_1000 |
|
value: 61.112 |
|
- type: mrr_at_3 |
|
value: 58.192 |
|
- type: mrr_at_5 |
|
value: 59.611999999999995 |
|
- type: ndcg_at_1 |
|
value: 50.470000000000006 |
|
- type: ndcg_at_10 |
|
value: 63.071999999999996 |
|
- type: ndcg_at_100 |
|
value: 66.964 |
|
- type: ndcg_at_1000 |
|
value: 67.659 |
|
- type: ndcg_at_3 |
|
value: 57.74399999999999 |
|
- type: ndcg_at_5 |
|
value: 60.367000000000004 |
|
- type: precision_at_1 |
|
value: 50.470000000000006 |
|
- type: precision_at_10 |
|
value: 10.019 |
|
- type: precision_at_100 |
|
value: 1.29 |
|
- type: precision_at_1000 |
|
value: 0.13899999999999998 |
|
- type: precision_at_3 |
|
value: 25.558999999999997 |
|
- type: precision_at_5 |
|
value: 17.467 |
|
- type: recall_at_1 |
|
value: 44.424 |
|
- type: recall_at_10 |
|
value: 77.02 |
|
- type: recall_at_100 |
|
value: 93.738 |
|
- type: recall_at_1000 |
|
value: 98.451 |
|
- type: recall_at_3 |
|
value: 62.888 |
|
- type: recall_at_5 |
|
value: 69.138 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.294 |
|
- type: map_at_10 |
|
value: 34.503 |
|
- type: map_at_100 |
|
value: 35.641 |
|
- type: map_at_1000 |
|
value: 35.724000000000004 |
|
- type: map_at_3 |
|
value: 31.753999999999998 |
|
- type: map_at_5 |
|
value: 33.190999999999995 |
|
- type: mrr_at_1 |
|
value: 28.362 |
|
- type: mrr_at_10 |
|
value: 36.53 |
|
- type: mrr_at_100 |
|
value: 37.541000000000004 |
|
- type: mrr_at_1000 |
|
value: 37.602000000000004 |
|
- type: mrr_at_3 |
|
value: 33.917 |
|
- type: mrr_at_5 |
|
value: 35.358000000000004 |
|
- type: ndcg_at_1 |
|
value: 28.362 |
|
- type: ndcg_at_10 |
|
value: 39.513999999999996 |
|
- type: ndcg_at_100 |
|
value: 44.815 |
|
- type: ndcg_at_1000 |
|
value: 46.839 |
|
- type: ndcg_at_3 |
|
value: 34.02 |
|
- type: ndcg_at_5 |
|
value: 36.522 |
|
- type: precision_at_1 |
|
value: 28.362 |
|
- type: precision_at_10 |
|
value: 6.101999999999999 |
|
- type: precision_at_100 |
|
value: 0.9129999999999999 |
|
- type: precision_at_1000 |
|
value: 0.11399999999999999 |
|
- type: precision_at_3 |
|
value: 14.161999999999999 |
|
- type: precision_at_5 |
|
value: 9.966 |
|
- type: recall_at_1 |
|
value: 26.294 |
|
- type: recall_at_10 |
|
value: 53.098 |
|
- type: recall_at_100 |
|
value: 76.877 |
|
- type: recall_at_1000 |
|
value: 91.834 |
|
- type: recall_at_3 |
|
value: 38.266 |
|
- type: recall_at_5 |
|
value: 44.287 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.407 |
|
- type: map_at_10 |
|
value: 25.185999999999996 |
|
- type: map_at_100 |
|
value: 26.533 |
|
- type: map_at_1000 |
|
value: 26.657999999999998 |
|
- type: map_at_3 |
|
value: 22.201999999999998 |
|
- type: map_at_5 |
|
value: 23.923 |
|
- type: mrr_at_1 |
|
value: 20.522000000000002 |
|
- type: mrr_at_10 |
|
value: 29.522 |
|
- type: mrr_at_100 |
|
value: 30.644 |
|
- type: mrr_at_1000 |
|
value: 30.713 |
|
- type: mrr_at_3 |
|
value: 26.679000000000002 |
|
- type: mrr_at_5 |
|
value: 28.483000000000004 |
|
- type: ndcg_at_1 |
|
value: 20.522000000000002 |
|
- type: ndcg_at_10 |
|
value: 30.656 |
|
- type: ndcg_at_100 |
|
value: 36.864999999999995 |
|
- type: ndcg_at_1000 |
|
value: 39.675 |
|
- type: ndcg_at_3 |
|
value: 25.319000000000003 |
|
- type: ndcg_at_5 |
|
value: 27.992 |
|
- type: precision_at_1 |
|
value: 20.522000000000002 |
|
- type: precision_at_10 |
|
value: 5.795999999999999 |
|
- type: precision_at_100 |
|
value: 1.027 |
|
- type: precision_at_1000 |
|
value: 0.13999999999999999 |
|
- type: precision_at_3 |
|
value: 12.396 |
|
- type: precision_at_5 |
|
value: 9.328 |
|
- type: recall_at_1 |
|
value: 16.407 |
|
- type: recall_at_10 |
|
value: 43.164 |
|
- type: recall_at_100 |
|
value: 69.695 |
|
- type: recall_at_1000 |
|
value: 89.41900000000001 |
|
- type: recall_at_3 |
|
value: 28.634999999999998 |
|
- type: recall_at_5 |
|
value: 35.308 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.473 |
|
- type: map_at_10 |
|
value: 41.676 |
|
- type: map_at_100 |
|
value: 43.120999999999995 |
|
- type: map_at_1000 |
|
value: 43.230000000000004 |
|
- type: map_at_3 |
|
value: 38.306000000000004 |
|
- type: map_at_5 |
|
value: 40.355999999999995 |
|
- type: mrr_at_1 |
|
value: 37.536 |
|
- type: mrr_at_10 |
|
value: 47.643 |
|
- type: mrr_at_100 |
|
value: 48.508 |
|
- type: mrr_at_1000 |
|
value: 48.551 |
|
- type: mrr_at_3 |
|
value: 45.348 |
|
- type: mrr_at_5 |
|
value: 46.744 |
|
- type: ndcg_at_1 |
|
value: 37.536 |
|
- type: ndcg_at_10 |
|
value: 47.823 |
|
- type: ndcg_at_100 |
|
value: 53.395 |
|
- type: ndcg_at_1000 |
|
value: 55.271 |
|
- type: ndcg_at_3 |
|
value: 42.768 |
|
- type: ndcg_at_5 |
|
value: 45.373000000000005 |
|
- type: precision_at_1 |
|
value: 37.536 |
|
- type: precision_at_10 |
|
value: 8.681 |
|
- type: precision_at_100 |
|
value: 1.34 |
|
- type: precision_at_1000 |
|
value: 0.165 |
|
- type: precision_at_3 |
|
value: 20.468 |
|
- type: precision_at_5 |
|
value: 14.495 |
|
- type: recall_at_1 |
|
value: 30.473 |
|
- type: recall_at_10 |
|
value: 60.092999999999996 |
|
- type: recall_at_100 |
|
value: 82.733 |
|
- type: recall_at_1000 |
|
value: 94.875 |
|
- type: recall_at_3 |
|
value: 45.734 |
|
- type: recall_at_5 |
|
value: 52.691 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.976000000000003 |
|
- type: map_at_10 |
|
value: 41.097 |
|
- type: map_at_100 |
|
value: 42.547000000000004 |
|
- type: map_at_1000 |
|
value: 42.659000000000006 |
|
- type: map_at_3 |
|
value: 37.251 |
|
- type: map_at_5 |
|
value: 39.493 |
|
- type: mrr_at_1 |
|
value: 37.557 |
|
- type: mrr_at_10 |
|
value: 46.605000000000004 |
|
- type: mrr_at_100 |
|
value: 47.487 |
|
- type: mrr_at_1000 |
|
value: 47.54 |
|
- type: mrr_at_3 |
|
value: 43.721 |
|
- type: mrr_at_5 |
|
value: 45.411 |
|
- type: ndcg_at_1 |
|
value: 37.557 |
|
- type: ndcg_at_10 |
|
value: 47.449000000000005 |
|
- type: ndcg_at_100 |
|
value: 53.052 |
|
- type: ndcg_at_1000 |
|
value: 55.010999999999996 |
|
- type: ndcg_at_3 |
|
value: 41.439 |
|
- type: ndcg_at_5 |
|
value: 44.292 |
|
- type: precision_at_1 |
|
value: 37.557 |
|
- type: precision_at_10 |
|
value: 8.847 |
|
- type: precision_at_100 |
|
value: 1.357 |
|
- type: precision_at_1000 |
|
value: 0.16999999999999998 |
|
- type: precision_at_3 |
|
value: 20.091 |
|
- type: precision_at_5 |
|
value: 14.384 |
|
- type: recall_at_1 |
|
value: 29.976000000000003 |
|
- type: recall_at_10 |
|
value: 60.99099999999999 |
|
- type: recall_at_100 |
|
value: 84.245 |
|
- type: recall_at_1000 |
|
value: 96.97200000000001 |
|
- type: recall_at_3 |
|
value: 43.794 |
|
- type: recall_at_5 |
|
value: 51.778999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.099166666666665 |
|
- type: map_at_10 |
|
value: 38.1365 |
|
- type: map_at_100 |
|
value: 39.44491666666667 |
|
- type: map_at_1000 |
|
value: 39.55858333333334 |
|
- type: map_at_3 |
|
value: 35.03641666666666 |
|
- type: map_at_5 |
|
value: 36.79833333333334 |
|
- type: mrr_at_1 |
|
value: 33.39966666666667 |
|
- type: mrr_at_10 |
|
value: 42.42583333333333 |
|
- type: mrr_at_100 |
|
value: 43.28575 |
|
- type: mrr_at_1000 |
|
value: 43.33741666666667 |
|
- type: mrr_at_3 |
|
value: 39.94975 |
|
- type: mrr_at_5 |
|
value: 41.41633333333334 |
|
- type: ndcg_at_1 |
|
value: 33.39966666666667 |
|
- type: ndcg_at_10 |
|
value: 43.81741666666667 |
|
- type: ndcg_at_100 |
|
value: 49.08166666666667 |
|
- type: ndcg_at_1000 |
|
value: 51.121166666666674 |
|
- type: ndcg_at_3 |
|
value: 38.73575 |
|
- type: ndcg_at_5 |
|
value: 41.18158333333333 |
|
- type: precision_at_1 |
|
value: 33.39966666666667 |
|
- type: precision_at_10 |
|
value: 7.738916666666667 |
|
- type: precision_at_100 |
|
value: 1.2265833333333331 |
|
- type: precision_at_1000 |
|
value: 0.15983333333333336 |
|
- type: precision_at_3 |
|
value: 17.967416666666665 |
|
- type: precision_at_5 |
|
value: 12.78675 |
|
- type: recall_at_1 |
|
value: 28.099166666666665 |
|
- type: recall_at_10 |
|
value: 56.27049999999999 |
|
- type: recall_at_100 |
|
value: 78.93291666666667 |
|
- type: recall_at_1000 |
|
value: 92.81608333333334 |
|
- type: recall_at_3 |
|
value: 42.09775 |
|
- type: recall_at_5 |
|
value: 48.42533333333334 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.663 |
|
- type: map_at_10 |
|
value: 30.377 |
|
- type: map_at_100 |
|
value: 31.426 |
|
- type: map_at_1000 |
|
value: 31.519000000000002 |
|
- type: map_at_3 |
|
value: 28.069 |
|
- type: map_at_5 |
|
value: 29.256999999999998 |
|
- type: mrr_at_1 |
|
value: 26.687 |
|
- type: mrr_at_10 |
|
value: 33.107 |
|
- type: mrr_at_100 |
|
value: 34.055 |
|
- type: mrr_at_1000 |
|
value: 34.117999999999995 |
|
- type: mrr_at_3 |
|
value: 31.058000000000003 |
|
- type: mrr_at_5 |
|
value: 32.14 |
|
- type: ndcg_at_1 |
|
value: 26.687 |
|
- type: ndcg_at_10 |
|
value: 34.615 |
|
- type: ndcg_at_100 |
|
value: 39.776 |
|
- type: ndcg_at_1000 |
|
value: 42.05 |
|
- type: ndcg_at_3 |
|
value: 30.322 |
|
- type: ndcg_at_5 |
|
value: 32.157000000000004 |
|
- type: precision_at_1 |
|
value: 26.687 |
|
- type: precision_at_10 |
|
value: 5.491 |
|
- type: precision_at_100 |
|
value: 0.877 |
|
- type: precision_at_1000 |
|
value: 0.11499999999999999 |
|
- type: precision_at_3 |
|
value: 13.139000000000001 |
|
- type: precision_at_5 |
|
value: 9.049 |
|
- type: recall_at_1 |
|
value: 23.663 |
|
- type: recall_at_10 |
|
value: 45.035 |
|
- type: recall_at_100 |
|
value: 68.554 |
|
- type: recall_at_1000 |
|
value: 85.077 |
|
- type: recall_at_3 |
|
value: 32.982 |
|
- type: recall_at_5 |
|
value: 37.688 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.403 |
|
- type: map_at_10 |
|
value: 25.197000000000003 |
|
- type: map_at_100 |
|
value: 26.355 |
|
- type: map_at_1000 |
|
value: 26.487 |
|
- type: map_at_3 |
|
value: 22.733 |
|
- type: map_at_5 |
|
value: 24.114 |
|
- type: mrr_at_1 |
|
value: 21.37 |
|
- type: mrr_at_10 |
|
value: 29.091 |
|
- type: mrr_at_100 |
|
value: 30.018 |
|
- type: mrr_at_1000 |
|
value: 30.096 |
|
- type: mrr_at_3 |
|
value: 26.887 |
|
- type: mrr_at_5 |
|
value: 28.157 |
|
- type: ndcg_at_1 |
|
value: 21.37 |
|
- type: ndcg_at_10 |
|
value: 30.026000000000003 |
|
- type: ndcg_at_100 |
|
value: 35.416 |
|
- type: ndcg_at_1000 |
|
value: 38.45 |
|
- type: ndcg_at_3 |
|
value: 25.764 |
|
- type: ndcg_at_5 |
|
value: 27.742 |
|
- type: precision_at_1 |
|
value: 21.37 |
|
- type: precision_at_10 |
|
value: 5.609 |
|
- type: precision_at_100 |
|
value: 0.9860000000000001 |
|
- type: precision_at_1000 |
|
value: 0.14300000000000002 |
|
- type: precision_at_3 |
|
value: 12.423 |
|
- type: precision_at_5 |
|
value: 9.009 |
|
- type: recall_at_1 |
|
value: 17.403 |
|
- type: recall_at_10 |
|
value: 40.573 |
|
- type: recall_at_100 |
|
value: 64.818 |
|
- type: recall_at_1000 |
|
value: 86.53699999999999 |
|
- type: recall_at_3 |
|
value: 28.493000000000002 |
|
- type: recall_at_5 |
|
value: 33.660000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.639 |
|
- type: map_at_10 |
|
value: 38.951 |
|
- type: map_at_100 |
|
value: 40.238 |
|
- type: map_at_1000 |
|
value: 40.327 |
|
- type: map_at_3 |
|
value: 35.842 |
|
- type: map_at_5 |
|
value: 37.617 |
|
- type: mrr_at_1 |
|
value: 33.769 |
|
- type: mrr_at_10 |
|
value: 43.088 |
|
- type: mrr_at_100 |
|
value: 44.03 |
|
- type: mrr_at_1000 |
|
value: 44.072 |
|
- type: mrr_at_3 |
|
value: 40.656 |
|
- type: mrr_at_5 |
|
value: 42.138999999999996 |
|
- type: ndcg_at_1 |
|
value: 33.769 |
|
- type: ndcg_at_10 |
|
value: 44.676 |
|
- type: ndcg_at_100 |
|
value: 50.416000000000004 |
|
- type: ndcg_at_1000 |
|
value: 52.227999999999994 |
|
- type: ndcg_at_3 |
|
value: 39.494 |
|
- type: ndcg_at_5 |
|
value: 42.013 |
|
- type: precision_at_1 |
|
value: 33.769 |
|
- type: precision_at_10 |
|
value: 7.668 |
|
- type: precision_at_100 |
|
value: 1.18 |
|
- type: precision_at_1000 |
|
value: 0.145 |
|
- type: precision_at_3 |
|
value: 18.221 |
|
- type: precision_at_5 |
|
value: 12.966 |
|
- type: recall_at_1 |
|
value: 28.639 |
|
- type: recall_at_10 |
|
value: 57.687999999999995 |
|
- type: recall_at_100 |
|
value: 82.541 |
|
- type: recall_at_1000 |
|
value: 94.896 |
|
- type: recall_at_3 |
|
value: 43.651 |
|
- type: recall_at_5 |
|
value: 49.925999999999995 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.57 |
|
- type: map_at_10 |
|
value: 40.004 |
|
- type: map_at_100 |
|
value: 41.75 |
|
- type: map_at_1000 |
|
value: 41.97 |
|
- type: map_at_3 |
|
value: 36.788 |
|
- type: map_at_5 |
|
value: 38.671 |
|
- type: mrr_at_1 |
|
value: 35.375 |
|
- type: mrr_at_10 |
|
value: 45.121 |
|
- type: mrr_at_100 |
|
value: 45.994 |
|
- type: mrr_at_1000 |
|
value: 46.04 |
|
- type: mrr_at_3 |
|
value: 42.227 |
|
- type: mrr_at_5 |
|
value: 43.995 |
|
- type: ndcg_at_1 |
|
value: 35.375 |
|
- type: ndcg_at_10 |
|
value: 46.392 |
|
- type: ndcg_at_100 |
|
value: 52.196 |
|
- type: ndcg_at_1000 |
|
value: 54.274 |
|
- type: ndcg_at_3 |
|
value: 41.163 |
|
- type: ndcg_at_5 |
|
value: 43.813 |
|
- type: precision_at_1 |
|
value: 35.375 |
|
- type: precision_at_10 |
|
value: 8.676 |
|
- type: precision_at_100 |
|
value: 1.678 |
|
- type: precision_at_1000 |
|
value: 0.253 |
|
- type: precision_at_3 |
|
value: 19.104 |
|
- type: precision_at_5 |
|
value: 13.913 |
|
- type: recall_at_1 |
|
value: 29.57 |
|
- type: recall_at_10 |
|
value: 58.779 |
|
- type: recall_at_100 |
|
value: 83.337 |
|
- type: recall_at_1000 |
|
value: 95.979 |
|
- type: recall_at_3 |
|
value: 44.005 |
|
- type: recall_at_5 |
|
value: 50.975 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 20.832 |
|
- type: map_at_10 |
|
value: 29.733999999999998 |
|
- type: map_at_100 |
|
value: 30.727 |
|
- type: map_at_1000 |
|
value: 30.843999999999998 |
|
- type: map_at_3 |
|
value: 26.834999999999997 |
|
- type: map_at_5 |
|
value: 28.555999999999997 |
|
- type: mrr_at_1 |
|
value: 22.921 |
|
- type: mrr_at_10 |
|
value: 31.791999999999998 |
|
- type: mrr_at_100 |
|
value: 32.666000000000004 |
|
- type: mrr_at_1000 |
|
value: 32.751999999999995 |
|
- type: mrr_at_3 |
|
value: 29.144 |
|
- type: mrr_at_5 |
|
value: 30.622 |
|
- type: ndcg_at_1 |
|
value: 22.921 |
|
- type: ndcg_at_10 |
|
value: 34.915 |
|
- type: ndcg_at_100 |
|
value: 39.744 |
|
- type: ndcg_at_1000 |
|
value: 42.407000000000004 |
|
- type: ndcg_at_3 |
|
value: 29.421000000000003 |
|
- type: ndcg_at_5 |
|
value: 32.211 |
|
- type: precision_at_1 |
|
value: 22.921 |
|
- type: precision_at_10 |
|
value: 5.675 |
|
- type: precision_at_100 |
|
value: 0.872 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 12.753999999999998 |
|
- type: precision_at_5 |
|
value: 9.353 |
|
- type: recall_at_1 |
|
value: 20.832 |
|
- type: recall_at_10 |
|
value: 48.795 |
|
- type: recall_at_100 |
|
value: 70.703 |
|
- type: recall_at_1000 |
|
value: 90.187 |
|
- type: recall_at_3 |
|
value: 34.455000000000005 |
|
- type: recall_at_5 |
|
value: 40.967 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 10.334 |
|
- type: map_at_10 |
|
value: 19.009999999999998 |
|
- type: map_at_100 |
|
value: 21.129 |
|
- type: map_at_1000 |
|
value: 21.328 |
|
- type: map_at_3 |
|
value: 15.152 |
|
- type: map_at_5 |
|
value: 17.084 |
|
- type: mrr_at_1 |
|
value: 23.453 |
|
- type: mrr_at_10 |
|
value: 36.099 |
|
- type: mrr_at_100 |
|
value: 37.069 |
|
- type: mrr_at_1000 |
|
value: 37.104 |
|
- type: mrr_at_3 |
|
value: 32.096000000000004 |
|
- type: mrr_at_5 |
|
value: 34.451 |
|
- type: ndcg_at_1 |
|
value: 23.453 |
|
- type: ndcg_at_10 |
|
value: 27.739000000000004 |
|
- type: ndcg_at_100 |
|
value: 35.836 |
|
- type: ndcg_at_1000 |
|
value: 39.242 |
|
- type: ndcg_at_3 |
|
value: 21.263 |
|
- type: ndcg_at_5 |
|
value: 23.677 |
|
- type: precision_at_1 |
|
value: 23.453 |
|
- type: precision_at_10 |
|
value: 9.199 |
|
- type: precision_at_100 |
|
value: 1.791 |
|
- type: precision_at_1000 |
|
value: 0.242 |
|
- type: precision_at_3 |
|
value: 16.2 |
|
- type: precision_at_5 |
|
value: 13.147 |
|
- type: recall_at_1 |
|
value: 10.334 |
|
- type: recall_at_10 |
|
value: 35.177 |
|
- type: recall_at_100 |
|
value: 63.009 |
|
- type: recall_at_1000 |
|
value: 81.938 |
|
- type: recall_at_3 |
|
value: 19.914 |
|
- type: recall_at_5 |
|
value: 26.077 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 8.212 |
|
- type: map_at_10 |
|
value: 17.386 |
|
- type: map_at_100 |
|
value: 24.234 |
|
- type: map_at_1000 |
|
value: 25.724999999999998 |
|
- type: map_at_3 |
|
value: 12.727 |
|
- type: map_at_5 |
|
value: 14.785 |
|
- type: mrr_at_1 |
|
value: 59.25 |
|
- type: mrr_at_10 |
|
value: 68.687 |
|
- type: mrr_at_100 |
|
value: 69.133 |
|
- type: mrr_at_1000 |
|
value: 69.14099999999999 |
|
- type: mrr_at_3 |
|
value: 66.917 |
|
- type: mrr_at_5 |
|
value: 67.742 |
|
- type: ndcg_at_1 |
|
value: 48.625 |
|
- type: ndcg_at_10 |
|
value: 36.675999999999995 |
|
- type: ndcg_at_100 |
|
value: 41.543 |
|
- type: ndcg_at_1000 |
|
value: 49.241 |
|
- type: ndcg_at_3 |
|
value: 41.373 |
|
- type: ndcg_at_5 |
|
value: 38.707 |
|
- type: precision_at_1 |
|
value: 59.25 |
|
- type: precision_at_10 |
|
value: 28.525 |
|
- type: precision_at_100 |
|
value: 9.027000000000001 |
|
- type: precision_at_1000 |
|
value: 1.8339999999999999 |
|
- type: precision_at_3 |
|
value: 44.833 |
|
- type: precision_at_5 |
|
value: 37.35 |
|
- type: recall_at_1 |
|
value: 8.212 |
|
- type: recall_at_10 |
|
value: 23.188 |
|
- type: recall_at_100 |
|
value: 48.613 |
|
- type: recall_at_1000 |
|
value: 73.093 |
|
- type: recall_at_3 |
|
value: 14.419 |
|
- type: recall_at_5 |
|
value: 17.798 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 52.725 |
|
- type: f1 |
|
value: 46.50743309855908 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 55.086 |
|
- type: map_at_10 |
|
value: 66.914 |
|
- type: map_at_100 |
|
value: 67.321 |
|
- type: map_at_1000 |
|
value: 67.341 |
|
- type: map_at_3 |
|
value: 64.75800000000001 |
|
- type: map_at_5 |
|
value: 66.189 |
|
- type: mrr_at_1 |
|
value: 59.28600000000001 |
|
- type: mrr_at_10 |
|
value: 71.005 |
|
- type: mrr_at_100 |
|
value: 71.304 |
|
- type: mrr_at_1000 |
|
value: 71.313 |
|
- type: mrr_at_3 |
|
value: 69.037 |
|
- type: mrr_at_5 |
|
value: 70.35 |
|
- type: ndcg_at_1 |
|
value: 59.28600000000001 |
|
- type: ndcg_at_10 |
|
value: 72.695 |
|
- type: ndcg_at_100 |
|
value: 74.432 |
|
- type: ndcg_at_1000 |
|
value: 74.868 |
|
- type: ndcg_at_3 |
|
value: 68.72200000000001 |
|
- type: ndcg_at_5 |
|
value: 71.081 |
|
- type: precision_at_1 |
|
value: 59.28600000000001 |
|
- type: precision_at_10 |
|
value: 9.499 |
|
- type: precision_at_100 |
|
value: 1.052 |
|
- type: precision_at_1000 |
|
value: 0.11100000000000002 |
|
- type: precision_at_3 |
|
value: 27.503 |
|
- type: precision_at_5 |
|
value: 17.854999999999997 |
|
- type: recall_at_1 |
|
value: 55.086 |
|
- type: recall_at_10 |
|
value: 86.453 |
|
- type: recall_at_100 |
|
value: 94.028 |
|
- type: recall_at_1000 |
|
value: 97.052 |
|
- type: recall_at_3 |
|
value: 75.821 |
|
- type: recall_at_5 |
|
value: 81.6 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.262999999999998 |
|
- type: map_at_10 |
|
value: 37.488 |
|
- type: map_at_100 |
|
value: 39.498 |
|
- type: map_at_1000 |
|
value: 39.687 |
|
- type: map_at_3 |
|
value: 32.529 |
|
- type: map_at_5 |
|
value: 35.455 |
|
- type: mrr_at_1 |
|
value: 44.907000000000004 |
|
- type: mrr_at_10 |
|
value: 53.239000000000004 |
|
- type: mrr_at_100 |
|
value: 54.086 |
|
- type: mrr_at_1000 |
|
value: 54.122 |
|
- type: mrr_at_3 |
|
value: 51.235 |
|
- type: mrr_at_5 |
|
value: 52.415 |
|
- type: ndcg_at_1 |
|
value: 44.907000000000004 |
|
- type: ndcg_at_10 |
|
value: 45.446 |
|
- type: ndcg_at_100 |
|
value: 52.429 |
|
- type: ndcg_at_1000 |
|
value: 55.169000000000004 |
|
- type: ndcg_at_3 |
|
value: 41.882000000000005 |
|
- type: ndcg_at_5 |
|
value: 43.178 |
|
- type: precision_at_1 |
|
value: 44.907000000000004 |
|
- type: precision_at_10 |
|
value: 12.931999999999999 |
|
- type: precision_at_100 |
|
value: 2.025 |
|
- type: precision_at_1000 |
|
value: 0.248 |
|
- type: precision_at_3 |
|
value: 28.652 |
|
- type: precision_at_5 |
|
value: 21.204 |
|
- type: recall_at_1 |
|
value: 22.262999999999998 |
|
- type: recall_at_10 |
|
value: 52.447 |
|
- type: recall_at_100 |
|
value: 78.045 |
|
- type: recall_at_1000 |
|
value: 94.419 |
|
- type: recall_at_3 |
|
value: 38.064 |
|
- type: recall_at_5 |
|
value: 44.769 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.519 |
|
- type: map_at_10 |
|
value: 45.831 |
|
- type: map_at_100 |
|
value: 46.815 |
|
- type: map_at_1000 |
|
value: 46.899 |
|
- type: map_at_3 |
|
value: 42.836 |
|
- type: map_at_5 |
|
value: 44.65 |
|
- type: mrr_at_1 |
|
value: 65.037 |
|
- type: mrr_at_10 |
|
value: 72.16 |
|
- type: mrr_at_100 |
|
value: 72.51100000000001 |
|
- type: mrr_at_1000 |
|
value: 72.53 |
|
- type: mrr_at_3 |
|
value: 70.682 |
|
- type: mrr_at_5 |
|
value: 71.54599999999999 |
|
- type: ndcg_at_1 |
|
value: 65.037 |
|
- type: ndcg_at_10 |
|
value: 55.17999999999999 |
|
- type: ndcg_at_100 |
|
value: 58.888 |
|
- type: ndcg_at_1000 |
|
value: 60.648 |
|
- type: ndcg_at_3 |
|
value: 50.501 |
|
- type: ndcg_at_5 |
|
value: 52.977 |
|
- type: precision_at_1 |
|
value: 65.037 |
|
- type: precision_at_10 |
|
value: 11.530999999999999 |
|
- type: precision_at_100 |
|
value: 1.4460000000000002 |
|
- type: precision_at_1000 |
|
value: 0.168 |
|
- type: precision_at_3 |
|
value: 31.483 |
|
- type: precision_at_5 |
|
value: 20.845 |
|
- type: recall_at_1 |
|
value: 32.519 |
|
- type: recall_at_10 |
|
value: 57.657000000000004 |
|
- type: recall_at_100 |
|
value: 72.30199999999999 |
|
- type: recall_at_1000 |
|
value: 84.024 |
|
- type: recall_at_3 |
|
value: 47.225 |
|
- type: recall_at_5 |
|
value: 52.113 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 88.3168 |
|
- type: ap |
|
value: 83.80165516037135 |
|
- type: f1 |
|
value: 88.29942471066407 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 20.724999999999998 |
|
- type: map_at_10 |
|
value: 32.736 |
|
- type: map_at_100 |
|
value: 33.938 |
|
- type: map_at_1000 |
|
value: 33.991 |
|
- type: map_at_3 |
|
value: 28.788000000000004 |
|
- type: map_at_5 |
|
value: 31.016 |
|
- type: mrr_at_1 |
|
value: 21.361 |
|
- type: mrr_at_10 |
|
value: 33.323 |
|
- type: mrr_at_100 |
|
value: 34.471000000000004 |
|
- type: mrr_at_1000 |
|
value: 34.518 |
|
- type: mrr_at_3 |
|
value: 29.453000000000003 |
|
- type: mrr_at_5 |
|
value: 31.629 |
|
- type: ndcg_at_1 |
|
value: 21.361 |
|
- type: ndcg_at_10 |
|
value: 39.649 |
|
- type: ndcg_at_100 |
|
value: 45.481 |
|
- type: ndcg_at_1000 |
|
value: 46.775 |
|
- type: ndcg_at_3 |
|
value: 31.594 |
|
- type: ndcg_at_5 |
|
value: 35.543 |
|
- type: precision_at_1 |
|
value: 21.361 |
|
- type: precision_at_10 |
|
value: 6.3740000000000006 |
|
- type: precision_at_100 |
|
value: 0.931 |
|
- type: precision_at_1000 |
|
value: 0.104 |
|
- type: precision_at_3 |
|
value: 13.514999999999999 |
|
- type: precision_at_5 |
|
value: 10.100000000000001 |
|
- type: recall_at_1 |
|
value: 20.724999999999998 |
|
- type: recall_at_10 |
|
value: 61.034 |
|
- type: recall_at_100 |
|
value: 88.062 |
|
- type: recall_at_1000 |
|
value: 97.86399999999999 |
|
- type: recall_at_3 |
|
value: 39.072 |
|
- type: recall_at_5 |
|
value: 48.53 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 93.8919288645691 |
|
- type: f1 |
|
value: 93.57059586398059 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 67.97993616051072 |
|
- type: f1 |
|
value: 48.244319183606535 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 68.90047074646941 |
|
- type: f1 |
|
value: 66.48999056063725 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 73.34566240753195 |
|
- type: f1 |
|
value: 73.54164154290658 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 34.21866934757011 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 32.000936217235534 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 31.68189362520352 |
|
- type: mrr |
|
value: 32.69603637784303 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.078 |
|
- type: map_at_10 |
|
value: 12.671 |
|
- type: map_at_100 |
|
value: 16.291 |
|
- type: map_at_1000 |
|
value: 17.855999999999998 |
|
- type: map_at_3 |
|
value: 9.610000000000001 |
|
- type: map_at_5 |
|
value: 11.152 |
|
- type: mrr_at_1 |
|
value: 43.963 |
|
- type: mrr_at_10 |
|
value: 53.173 |
|
- type: mrr_at_100 |
|
value: 53.718999999999994 |
|
- type: mrr_at_1000 |
|
value: 53.756 |
|
- type: mrr_at_3 |
|
value: 50.980000000000004 |
|
- type: mrr_at_5 |
|
value: 52.42 |
|
- type: ndcg_at_1 |
|
value: 42.415000000000006 |
|
- type: ndcg_at_10 |
|
value: 34.086 |
|
- type: ndcg_at_100 |
|
value: 32.545 |
|
- type: ndcg_at_1000 |
|
value: 41.144999999999996 |
|
- type: ndcg_at_3 |
|
value: 39.434999999999995 |
|
- type: ndcg_at_5 |
|
value: 37.888 |
|
- type: precision_at_1 |
|
value: 43.653 |
|
- type: precision_at_10 |
|
value: 25.014999999999997 |
|
- type: precision_at_100 |
|
value: 8.594 |
|
- type: precision_at_1000 |
|
value: 2.169 |
|
- type: precision_at_3 |
|
value: 37.049 |
|
- type: precision_at_5 |
|
value: 33.065 |
|
- type: recall_at_1 |
|
value: 6.078 |
|
- type: recall_at_10 |
|
value: 16.17 |
|
- type: recall_at_100 |
|
value: 34.512 |
|
- type: recall_at_1000 |
|
value: 65.447 |
|
- type: recall_at_3 |
|
value: 10.706 |
|
- type: recall_at_5 |
|
value: 13.158 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.378000000000004 |
|
- type: map_at_10 |
|
value: 42.178 |
|
- type: map_at_100 |
|
value: 43.32 |
|
- type: map_at_1000 |
|
value: 43.358000000000004 |
|
- type: map_at_3 |
|
value: 37.474000000000004 |
|
- type: map_at_5 |
|
value: 40.333000000000006 |
|
- type: mrr_at_1 |
|
value: 30.823 |
|
- type: mrr_at_10 |
|
value: 44.626 |
|
- type: mrr_at_100 |
|
value: 45.494 |
|
- type: mrr_at_1000 |
|
value: 45.519 |
|
- type: mrr_at_3 |
|
value: 40.585 |
|
- type: mrr_at_5 |
|
value: 43.146 |
|
- type: ndcg_at_1 |
|
value: 30.794 |
|
- type: ndcg_at_10 |
|
value: 50.099000000000004 |
|
- type: ndcg_at_100 |
|
value: 54.900999999999996 |
|
- type: ndcg_at_1000 |
|
value: 55.69499999999999 |
|
- type: ndcg_at_3 |
|
value: 41.238 |
|
- type: ndcg_at_5 |
|
value: 46.081 |
|
- type: precision_at_1 |
|
value: 30.794 |
|
- type: precision_at_10 |
|
value: 8.549 |
|
- type: precision_at_100 |
|
value: 1.124 |
|
- type: precision_at_1000 |
|
value: 0.12 |
|
- type: precision_at_3 |
|
value: 18.926000000000002 |
|
- type: precision_at_5 |
|
value: 14.16 |
|
- type: recall_at_1 |
|
value: 27.378000000000004 |
|
- type: recall_at_10 |
|
value: 71.842 |
|
- type: recall_at_100 |
|
value: 92.565 |
|
- type: recall_at_1000 |
|
value: 98.402 |
|
- type: recall_at_3 |
|
value: 49.053999999999995 |
|
- type: recall_at_5 |
|
value: 60.207 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 70.557 |
|
- type: map_at_10 |
|
value: 84.729 |
|
- type: map_at_100 |
|
value: 85.369 |
|
- type: map_at_1000 |
|
value: 85.382 |
|
- type: map_at_3 |
|
value: 81.72 |
|
- type: map_at_5 |
|
value: 83.613 |
|
- type: mrr_at_1 |
|
value: 81.3 |
|
- type: mrr_at_10 |
|
value: 87.488 |
|
- type: mrr_at_100 |
|
value: 87.588 |
|
- type: mrr_at_1000 |
|
value: 87.589 |
|
- type: mrr_at_3 |
|
value: 86.53 |
|
- type: mrr_at_5 |
|
value: 87.18599999999999 |
|
- type: ndcg_at_1 |
|
value: 81.28999999999999 |
|
- type: ndcg_at_10 |
|
value: 88.442 |
|
- type: ndcg_at_100 |
|
value: 89.637 |
|
- type: ndcg_at_1000 |
|
value: 89.70700000000001 |
|
- type: ndcg_at_3 |
|
value: 85.55199999999999 |
|
- type: ndcg_at_5 |
|
value: 87.154 |
|
- type: precision_at_1 |
|
value: 81.28999999999999 |
|
- type: precision_at_10 |
|
value: 13.489999999999998 |
|
- type: precision_at_100 |
|
value: 1.54 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 37.553 |
|
- type: precision_at_5 |
|
value: 24.708 |
|
- type: recall_at_1 |
|
value: 70.557 |
|
- type: recall_at_10 |
|
value: 95.645 |
|
- type: recall_at_100 |
|
value: 99.693 |
|
- type: recall_at_1000 |
|
value: 99.995 |
|
- type: recall_at_3 |
|
value: 87.359 |
|
- type: recall_at_5 |
|
value: 91.89699999999999 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 63.65060114776209 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 64.63271250680617 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.263 |
|
- type: map_at_10 |
|
value: 10.801 |
|
- type: map_at_100 |
|
value: 12.888 |
|
- type: map_at_1000 |
|
value: 13.224 |
|
- type: map_at_3 |
|
value: 7.362 |
|
- type: map_at_5 |
|
value: 9.149000000000001 |
|
- type: mrr_at_1 |
|
value: 21 |
|
- type: mrr_at_10 |
|
value: 31.416 |
|
- type: mrr_at_100 |
|
value: 32.513 |
|
- type: mrr_at_1000 |
|
value: 32.58 |
|
- type: mrr_at_3 |
|
value: 28.116999999999997 |
|
- type: mrr_at_5 |
|
value: 29.976999999999997 |
|
- type: ndcg_at_1 |
|
value: 21 |
|
- type: ndcg_at_10 |
|
value: 18.551000000000002 |
|
- type: ndcg_at_100 |
|
value: 26.657999999999998 |
|
- type: ndcg_at_1000 |
|
value: 32.485 |
|
- type: ndcg_at_3 |
|
value: 16.834 |
|
- type: ndcg_at_5 |
|
value: 15.204999999999998 |
|
- type: precision_at_1 |
|
value: 21 |
|
- type: precision_at_10 |
|
value: 9.84 |
|
- type: precision_at_100 |
|
value: 2.16 |
|
- type: precision_at_1000 |
|
value: 0.35500000000000004 |
|
- type: precision_at_3 |
|
value: 15.667 |
|
- type: precision_at_5 |
|
value: 13.62 |
|
- type: recall_at_1 |
|
value: 4.263 |
|
- type: recall_at_10 |
|
value: 19.922 |
|
- type: recall_at_100 |
|
value: 43.808 |
|
- type: recall_at_1000 |
|
value: 72.14500000000001 |
|
- type: recall_at_3 |
|
value: 9.493 |
|
- type: recall_at_5 |
|
value: 13.767999999999999 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 81.27446313317233 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 76.27963301217527 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 88.18495048450949 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 81.91982338692046 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 89.00896818385291 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 85.48814644586132 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 90.30116926966582 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 67.74132963032342 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_spearman |
|
value: 86.87741355780479 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 82.0019012295875 |
|
- type: mrr |
|
value: 94.70267024188593 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 50.05 |
|
- type: map_at_10 |
|
value: 59.36 |
|
- type: map_at_100 |
|
value: 59.967999999999996 |
|
- type: map_at_1000 |
|
value: 60.023 |
|
- type: map_at_3 |
|
value: 56.515 |
|
- type: map_at_5 |
|
value: 58.272999999999996 |
|
- type: mrr_at_1 |
|
value: 53 |
|
- type: mrr_at_10 |
|
value: 61.102000000000004 |
|
- type: mrr_at_100 |
|
value: 61.476 |
|
- type: mrr_at_1000 |
|
value: 61.523 |
|
- type: mrr_at_3 |
|
value: 58.778 |
|
- type: mrr_at_5 |
|
value: 60.128 |
|
- type: ndcg_at_1 |
|
value: 53 |
|
- type: ndcg_at_10 |
|
value: 64.43100000000001 |
|
- type: ndcg_at_100 |
|
value: 66.73599999999999 |
|
- type: ndcg_at_1000 |
|
value: 68.027 |
|
- type: ndcg_at_3 |
|
value: 59.279 |
|
- type: ndcg_at_5 |
|
value: 61.888 |
|
- type: precision_at_1 |
|
value: 53 |
|
- type: precision_at_10 |
|
value: 8.767 |
|
- type: precision_at_100 |
|
value: 1.01 |
|
- type: precision_at_1000 |
|
value: 0.11100000000000002 |
|
- type: precision_at_3 |
|
value: 23.444000000000003 |
|
- type: precision_at_5 |
|
value: 15.667 |
|
- type: recall_at_1 |
|
value: 50.05 |
|
- type: recall_at_10 |
|
value: 78.511 |
|
- type: recall_at_100 |
|
value: 88.5 |
|
- type: recall_at_1000 |
|
value: 98.333 |
|
- type: recall_at_3 |
|
value: 64.117 |
|
- type: recall_at_5 |
|
value: 70.867 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.72178217821782 |
|
- type: cos_sim_ap |
|
value: 93.0728601593541 |
|
- type: cos_sim_f1 |
|
value: 85.6727976766699 |
|
- type: cos_sim_precision |
|
value: 83.02063789868667 |
|
- type: cos_sim_recall |
|
value: 88.5 |
|
- type: dot_accuracy |
|
value: 99.72178217821782 |
|
- type: dot_ap |
|
value: 93.07287396168348 |
|
- type: dot_f1 |
|
value: 85.6727976766699 |
|
- type: dot_precision |
|
value: 83.02063789868667 |
|
- type: dot_recall |
|
value: 88.5 |
|
- type: euclidean_accuracy |
|
value: 99.72178217821782 |
|
- type: euclidean_ap |
|
value: 93.07285657982895 |
|
- type: euclidean_f1 |
|
value: 85.6727976766699 |
|
- type: euclidean_precision |
|
value: 83.02063789868667 |
|
- type: euclidean_recall |
|
value: 88.5 |
|
- type: manhattan_accuracy |
|
value: 99.72475247524753 |
|
- type: manhattan_ap |
|
value: 93.02792973059809 |
|
- type: manhattan_f1 |
|
value: 85.7727737973388 |
|
- type: manhattan_precision |
|
value: 87.84067085953879 |
|
- type: manhattan_recall |
|
value: 83.8 |
|
- type: max_accuracy |
|
value: 99.72475247524753 |
|
- type: max_ap |
|
value: 93.07287396168348 |
|
- type: max_f1 |
|
value: 85.7727737973388 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 68.77583615550819 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 36.151636938606956 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 52.16607939471187 |
|
- type: mrr |
|
value: 52.95172046091163 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.314646669495666 |
|
- type: cos_sim_spearman |
|
value: 31.83562491439455 |
|
- type: dot_pearson |
|
value: 31.314590842874157 |
|
- type: dot_spearman |
|
value: 31.83363065810437 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.198 |
|
- type: map_at_10 |
|
value: 1.3010000000000002 |
|
- type: map_at_100 |
|
value: 7.2139999999999995 |
|
- type: map_at_1000 |
|
value: 20.179 |
|
- type: map_at_3 |
|
value: 0.528 |
|
- type: map_at_5 |
|
value: 0.8019999999999999 |
|
- type: mrr_at_1 |
|
value: 72 |
|
- type: mrr_at_10 |
|
value: 83.39999999999999 |
|
- type: mrr_at_100 |
|
value: 83.39999999999999 |
|
- type: mrr_at_1000 |
|
value: 83.39999999999999 |
|
- type: mrr_at_3 |
|
value: 81.667 |
|
- type: mrr_at_5 |
|
value: 83.06700000000001 |
|
- type: ndcg_at_1 |
|
value: 66 |
|
- type: ndcg_at_10 |
|
value: 58.059000000000005 |
|
- type: ndcg_at_100 |
|
value: 44.316 |
|
- type: ndcg_at_1000 |
|
value: 43.147000000000006 |
|
- type: ndcg_at_3 |
|
value: 63.815999999999995 |
|
- type: ndcg_at_5 |
|
value: 63.005 |
|
- type: precision_at_1 |
|
value: 72 |
|
- type: precision_at_10 |
|
value: 61.4 |
|
- type: precision_at_100 |
|
value: 45.62 |
|
- type: precision_at_1000 |
|
value: 19.866 |
|
- type: precision_at_3 |
|
value: 70 |
|
- type: precision_at_5 |
|
value: 68.8 |
|
- type: recall_at_1 |
|
value: 0.198 |
|
- type: recall_at_10 |
|
value: 1.517 |
|
- type: recall_at_100 |
|
value: 10.587 |
|
- type: recall_at_1000 |
|
value: 41.233 |
|
- type: recall_at_3 |
|
value: 0.573 |
|
- type: recall_at_5 |
|
value: 0.907 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.894 |
|
- type: map_at_10 |
|
value: 8.488999999999999 |
|
- type: map_at_100 |
|
value: 14.445 |
|
- type: map_at_1000 |
|
value: 16.078 |
|
- type: map_at_3 |
|
value: 4.589 |
|
- type: map_at_5 |
|
value: 6.019 |
|
- type: mrr_at_1 |
|
value: 22.448999999999998 |
|
- type: mrr_at_10 |
|
value: 39.82 |
|
- type: mrr_at_100 |
|
value: 40.752 |
|
- type: mrr_at_1000 |
|
value: 40.771 |
|
- type: mrr_at_3 |
|
value: 34.354 |
|
- type: mrr_at_5 |
|
value: 37.721 |
|
- type: ndcg_at_1 |
|
value: 19.387999999999998 |
|
- type: ndcg_at_10 |
|
value: 21.563 |
|
- type: ndcg_at_100 |
|
value: 33.857 |
|
- type: ndcg_at_1000 |
|
value: 46.199 |
|
- type: ndcg_at_3 |
|
value: 22.296 |
|
- type: ndcg_at_5 |
|
value: 21.770999999999997 |
|
- type: precision_at_1 |
|
value: 22.448999999999998 |
|
- type: precision_at_10 |
|
value: 19.796 |
|
- type: precision_at_100 |
|
value: 7.142999999999999 |
|
- type: precision_at_1000 |
|
value: 1.541 |
|
- type: precision_at_3 |
|
value: 24.490000000000002 |
|
- type: precision_at_5 |
|
value: 22.448999999999998 |
|
- type: recall_at_1 |
|
value: 1.894 |
|
- type: recall_at_10 |
|
value: 14.931 |
|
- type: recall_at_100 |
|
value: 45.524 |
|
- type: recall_at_1000 |
|
value: 83.243 |
|
- type: recall_at_3 |
|
value: 5.712 |
|
- type: recall_at_5 |
|
value: 8.386000000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 71.049 |
|
- type: ap |
|
value: 13.85116971310922 |
|
- type: f1 |
|
value: 54.37504302487686 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 64.1312959818902 |
|
- type: f1 |
|
value: 64.11413877009383 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 54.13103431861502 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.327889372355 |
|
- type: cos_sim_ap |
|
value: 77.42059895975699 |
|
- type: cos_sim_f1 |
|
value: 71.02706903250873 |
|
- type: cos_sim_precision |
|
value: 69.75324344950394 |
|
- type: cos_sim_recall |
|
value: 72.34828496042216 |
|
- type: dot_accuracy |
|
value: 87.327889372355 |
|
- type: dot_ap |
|
value: 77.4209479346677 |
|
- type: dot_f1 |
|
value: 71.02706903250873 |
|
- type: dot_precision |
|
value: 69.75324344950394 |
|
- type: dot_recall |
|
value: 72.34828496042216 |
|
- type: euclidean_accuracy |
|
value: 87.327889372355 |
|
- type: euclidean_ap |
|
value: 77.42096495861037 |
|
- type: euclidean_f1 |
|
value: 71.02706903250873 |
|
- type: euclidean_precision |
|
value: 69.75324344950394 |
|
- type: euclidean_recall |
|
value: 72.34828496042216 |
|
- type: manhattan_accuracy |
|
value: 87.31000774870358 |
|
- type: manhattan_ap |
|
value: 77.38930750711619 |
|
- type: manhattan_f1 |
|
value: 71.07935314027831 |
|
- type: manhattan_precision |
|
value: 67.70957726295677 |
|
- type: manhattan_recall |
|
value: 74.80211081794195 |
|
- type: max_accuracy |
|
value: 87.327889372355 |
|
- type: max_ap |
|
value: 77.42096495861037 |
|
- type: max_f1 |
|
value: 71.07935314027831 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.58939729110878 |
|
- type: cos_sim_ap |
|
value: 87.17594155025475 |
|
- type: cos_sim_f1 |
|
value: 79.21146953405018 |
|
- type: cos_sim_precision |
|
value: 76.8918527109307 |
|
- type: cos_sim_recall |
|
value: 81.67539267015707 |
|
- type: dot_accuracy |
|
value: 89.58939729110878 |
|
- type: dot_ap |
|
value: 87.17593963273593 |
|
- type: dot_f1 |
|
value: 79.21146953405018 |
|
- type: dot_precision |
|
value: 76.8918527109307 |
|
- type: dot_recall |
|
value: 81.67539267015707 |
|
- type: euclidean_accuracy |
|
value: 89.58939729110878 |
|
- type: euclidean_ap |
|
value: 87.17592466925834 |
|
- type: euclidean_f1 |
|
value: 79.21146953405018 |
|
- type: euclidean_precision |
|
value: 76.8918527109307 |
|
- type: euclidean_recall |
|
value: 81.67539267015707 |
|
- type: manhattan_accuracy |
|
value: 89.62626615438352 |
|
- type: manhattan_ap |
|
value: 87.16589873161546 |
|
- type: manhattan_f1 |
|
value: 79.25143598295348 |
|
- type: manhattan_precision |
|
value: 76.39494177323712 |
|
- type: manhattan_recall |
|
value: 82.32984293193716 |
|
- type: max_accuracy |
|
value: 89.62626615438352 |
|
- type: max_ap |
|
value: 87.17594155025475 |
|
- type: max_f1 |
|
value: 79.25143598295348 |
|
--- |
|
|
|
# hkunlp/instructor-large |
|
We introduce **Instructor**👨🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨 achieves sota on 70 diverse embedding tasks ([MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard))! |
|
The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! |
|
|
|
**************************** **Updates** **************************** |
|
|
|
* 12/28: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-large) trained with hard negatives, which gives better performance. |
|
* 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-large) and [project page](https://instructor-embedding.github.io/)! Check them out! |
|
|
|
## Quick start |
|
<hr /> |
|
|
|
## Installation |
|
```bash |
|
pip install InstructorEmbedding |
|
``` |
|
|
|
## Compute your customized embeddings |
|
Then you can use the model like this to calculate domain-specific and task-aware embeddings: |
|
```python |
|
from InstructorEmbedding import INSTRUCTOR |
|
model = INSTRUCTOR('hkunlp/instructor-large') |
|
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments" |
|
instruction = "Represent the Science title:" |
|
embeddings = model.encode([[instruction,sentence]]) |
|
print(embeddings) |
|
``` |
|
|
|
## Use cases |
|
<hr /> |
|
|
|
## Calculate embeddings for your customized texts |
|
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: |
|
|
|
Represent the `domain` `text_type` for `task_objective`: |
|
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc. |
|
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc. |
|
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc. |
|
|
|
## Calculate Sentence similarities |
|
You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**. |
|
```python |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'], |
|
['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']] |
|
sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'], |
|
['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']] |
|
embeddings_a = model.encode(sentences_a) |
|
embeddings_b = model.encode(sentences_b) |
|
similarities = cosine_similarity(embeddings_a,embeddings_b) |
|
print(similarities) |
|
``` |
|
|
|
## Information Retrieval |
|
You can also use **customized embeddings** for information retrieval. |
|
```python |
|
import numpy as np |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']] |
|
corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'], |
|
['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"], |
|
['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']] |
|
query_embeddings = model.encode(query) |
|
corpus_embeddings = model.encode(corpus) |
|
similarities = cosine_similarity(query_embeddings,corpus_embeddings) |
|
retrieved_doc_id = np.argmax(similarities) |
|
print(retrieved_doc_id) |
|
``` |
|
|
|
## Clustering |
|
Use **customized embeddings** for clustering texts in groups. |
|
```python |
|
import sklearn.cluster |
|
sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'], |
|
['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'], |
|
['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'], |
|
['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"], |
|
['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']] |
|
embeddings = model.encode(sentences) |
|
clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2) |
|
clustering_model.fit(embeddings) |
|
cluster_assignment = clustering_model.labels_ |
|
print(cluster_assignment) |
|
``` |