Fast speech 2 multi-speaker english lang based
Prepare
Everything is done from main repo folder so TensorflowTTS/
- Optional* Download and prepare libritts (helper to prepare libri in examples/fastspeech2_libritts/libri_experiment/prepare_libri.ipynb)
- Dataset structure after finish this step:
|- TensorFlowTTS/ | |- LibriTTS/ | |- |- train-clean-100/ | |- |- SPEAKERS.txt | |- |- ... | |- libritts/ | |- |- 200/ | |- |- |- 200_124139_000001_000000.txt | |- |- |- 200_124139_000001_000000.wav | |- |- |- ... | |- |- 250/ | |- |- ... | |- tensorflow_tts/ | |- models/ | |- ...
- Extract Duration (use examples/mfa_extraction or pretrained tacotron2)
- Optional* build docker
bash examples/fastspeech2_libritts/scripts/build.sh
- Optional* run docker
bash examples/fastspeech2_libritts/scripts/interactive.sh
- Preprocessing:
tensorflow-tts-preprocess --rootdir ./libritts \ --outdir ./dump_libritts \ --config preprocess/libritts_preprocess.yaml \ --dataset libritts
- Normalization:
tensorflow-tts-normalize --rootdir ./dump_libritts \ --outdir ./dump_libritts \ --config preprocess/libritts_preprocess.yaml \ --dataset libritts
- Change CharactorDurationF0EnergyMelDataset speaker mapper in fastspeech2_dataset to match your dataset (if you use libri with mfa_extraction you didnt need to change anything)
- Change train_libri.sh to match your dataset and run:
bash examples/fastspeech2_libritts/scripts/train_libri.sh
- Optional* If u have problems with tensor sizes mismatch check step 5 in
examples/mfa_extraction
directory
Comments
This version is using popular train.txt '|' split used in other repos. Training files should looks like this =>
Wav Path | Text | Speaker Name
Wav Path2 | Text | Speaker Name