vishaljoshi24's picture
Initial Commit
a080fe0
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# /// script
# dependencies = [
# "trl @ git+https://github.com/huggingface/trl.git",
# "peft",
# ]
# ///
"""
python examples/scripts/mpo_vlm.py \
--dataset_name HuggingFaceH4/rlaif-v_formatted \
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--gradient_accumulation_steps 8 \
--dataset_num_proc 1 \
--output_dir dpo_idefics_rlaif-v \
--torch_dtype bfloat16 \
--gradient_checkpointing \
--use_peft \
--lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj \
--loss_type sigmoid bco_pair sft \
--loss_weights 0.8 0.2 1.0 \
--bf16 True
"""
import torch
from datasets import load_dataset
from PIL import Image
from transformers import AutoModelForVision2Seq, AutoProcessor
from trl import (
DPOConfig,
DPOTrainer,
ModelConfig,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
################
# Model & Processor
################
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
trust_remote_code=model_args.trust_remote_code,
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForVision2Seq.from_pretrained(
model_args.model_name_or_path,
**model_kwargs,
)
peft_config = get_peft_config(model_args)
if peft_config is None:
ref_model = AutoModelForVision2Seq.from_pretrained(
model_args.model_name_or_path,
**model_kwargs,
)
else:
ref_model = None
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
################
# Dataset
################
dataset = load_dataset(
script_args.dataset_name,
name=script_args.dataset_config,
streaming=script_args.dataset_streaming,
)
train_dataset = dataset[script_args.dataset_train_split]
test_dataset = dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None
def ensure_rgb(example):
# Convert the image to RGB if it's not already
image = example["images"][0]
if isinstance(image, Image.Image):
if image.mode != "RGB":
image = image.convert("RGB")
example["images"] = [image]
return example
# Apply the transformation to the dataset (change num_proc depending on the available compute)
train_dataset = train_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc)
if test_dataset is not None:
test_dataset = test_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc)
################
# Training
################
trainer = DPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
processing_class=processor,
peft_config=peft_config,
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)