Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# /// script | |
# dependencies = [ | |
# "trl @ git+https://github.com/huggingface/trl.git", | |
# "peft", | |
# ] | |
# /// | |
""" | |
python examples/scripts/mpo_vlm.py \ | |
--dataset_name HuggingFaceH4/rlaif-v_formatted \ | |
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ | |
--per_device_train_batch_size 4 \ | |
--per_device_eval_batch_size 4 \ | |
--num_train_epochs 1 \ | |
--gradient_accumulation_steps 8 \ | |
--dataset_num_proc 1 \ | |
--output_dir dpo_idefics_rlaif-v \ | |
--torch_dtype bfloat16 \ | |
--gradient_checkpointing \ | |
--use_peft \ | |
--lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj \ | |
--loss_type sigmoid bco_pair sft \ | |
--loss_weights 0.8 0.2 1.0 \ | |
--bf16 True | |
""" | |
import torch | |
from datasets import load_dataset | |
from PIL import Image | |
from transformers import AutoModelForVision2Seq, AutoProcessor | |
from trl import ( | |
DPOConfig, | |
DPOTrainer, | |
ModelConfig, | |
ScriptArguments, | |
TrlParser, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
) | |
if __name__ == "__main__": | |
parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig)) | |
script_args, training_args, model_args = parser.parse_args_and_config() | |
################ | |
# Model & Processor | |
################ | |
torch_dtype = ( | |
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
) | |
quantization_config = get_quantization_config(model_args) | |
model_kwargs = dict( | |
trust_remote_code=model_args.trust_remote_code, | |
revision=model_args.model_revision, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=torch_dtype, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
model = AutoModelForVision2Seq.from_pretrained( | |
model_args.model_name_or_path, | |
**model_kwargs, | |
) | |
peft_config = get_peft_config(model_args) | |
if peft_config is None: | |
ref_model = AutoModelForVision2Seq.from_pretrained( | |
model_args.model_name_or_path, | |
**model_kwargs, | |
) | |
else: | |
ref_model = None | |
processor = AutoProcessor.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
################ | |
# Dataset | |
################ | |
dataset = load_dataset( | |
script_args.dataset_name, | |
name=script_args.dataset_config, | |
streaming=script_args.dataset_streaming, | |
) | |
train_dataset = dataset[script_args.dataset_train_split] | |
test_dataset = dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None | |
def ensure_rgb(example): | |
# Convert the image to RGB if it's not already | |
image = example["images"][0] | |
if isinstance(image, Image.Image): | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
example["images"] = [image] | |
return example | |
# Apply the transformation to the dataset (change num_proc depending on the available compute) | |
train_dataset = train_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc) | |
if test_dataset is not None: | |
test_dataset = test_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc) | |
################ | |
# Training | |
################ | |
trainer = DPOTrainer( | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=test_dataset, | |
processing_class=processor, | |
peft_config=peft_config, | |
) | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |