inkchatgpt / app.py
vinhnx90's picture
Update API key config
1334178
raw
history blame
5.01 kB
import os
import streamlit as st
from chat_profile import ChatProfileRoleEnum
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import Docx2txtLoader, PyPDFLoader, TextLoader
from langchain_community.vectorstores.chroma import Chroma
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
__import__("pysqlite3")
import sys
sys.modules["sqlite3"] = sys.modules.pop("pysqlite3")
# config page
st.set_page_config(page_title="InkChatGPT", page_icon="πŸ“š")
# Set up memory
msgs = StreamlitChatMessageHistory(key="langchain_messages")
def load_and_process_file(file_data):
"""
Load and process the uploaded file.
Returns a vector store containing the embedded chunks of the file.
"""
file_name = os.path.join("./", file_data.name)
with open(file_name, "wb") as f:
f.write(file_data.getvalue())
_, extension = os.path.splitext(file_name)
# Load the file using the appropriate loader
if extension == ".pdf":
loader = PyPDFLoader(file_name)
elif extension == ".docx":
loader = Docx2txtLoader(file_name)
elif extension == ".txt":
loader = TextLoader(file_name)
else:
st.error("This document format is not supported!")
return None
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
chunks = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings(api_key=st.session_state.api_key)
vector_store = Chroma.from_documents(chunks, embeddings)
return vector_store
def main():
"""
The main function that runs the Streamlit app.
"""
if not st.session_state.api_key:
st.info("Please add your OpenAI API key to continue.")
if len(msgs.messages) == 0:
msgs.add_ai_message(
"""
Hello, how can I help you?
You can upload a document and chat with me to ask questions related to its content.
"""
)
# Render current messages from StreamlitChatMessageHistory
for msg in msgs.messages:
st.chat_message(msg.type).write(msg.content)
# If user inputs a new prompt, generate and draw a new response
if question := st.chat_input(
placeholder="Chat with your document",
disabled=(not st.session_state.api_key),
):
st.chat_message(ChatProfileRoleEnum.Human).write(question)
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are an AI chatbot having a conversation with a human."),
MessagesPlaceholder(variable_name="history"),
(ChatProfileRoleEnum.Human, f"{question}"),
]
)
llm = ChatOpenAI(
api_key=st.session_state.api_key,
temperature=0.0,
model_name="gpt-3.5-turbo",
)
chain = prompt | llm
chain_with_history = RunnableWithMessageHistory(
chain,
lambda session_id: msgs,
input_messages_key="question",
history_messages_key="history",
)
# Note: new messages are saved to history automatically by Langchain during run
config = {"configurable": {"session_id": "any"}}
response = chain_with_history.invoke({"question": question}, config)
st.chat_message(ChatProfileRoleEnum.AI).write(response.content)
def build_sidebar():
with st.sidebar:
st.subheader("πŸ“š InkChatGPT")
openai_api_key = st.text_input(
"OpenAI API Key",
type="password",
placeholder="Enter your OpenAI API key",
)
st.session_state.api_key = openai_api_key
with st.form("my_form"):
uploaded_file = st.file_uploader(
"Select a file", type=["pdf", "docx", "txt"], key="file_uploader"
)
add_file = st.form_submit_button(
"Process File",
disabled=(not uploaded_file and not openai_api_key),
)
if (
add_file
and uploaded_file
and st.session_state.api_key.startswith("sk-")
):
with st.spinner("πŸ’­ Thinking..."):
vector_store = load_and_process_file(uploaded_file)
if vector_store:
msgs.add_ai_message(
f"""
File: `{uploaded_file.name}`, processed successfully!
Feel free to ask me any question.
"""
)
if __name__ == "__main__":
build_sidebar()
main()