vilarin's picture
Upload 63 files
2ba49a8 verified
import torch
from ..models import SDUNet, SDMotionModel, SDXLUNet, SDXLMotionModel
from ..models.sd_unet import PushBlock, PopBlock
from ..controlnets import MultiControlNetManager
def lets_dance(
unet: SDUNet,
motion_modules: SDMotionModel = None,
controlnet: MultiControlNetManager = None,
sample = None,
timestep = None,
encoder_hidden_states = None,
ipadapter_kwargs_list = {},
controlnet_frames = None,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
tiled=False,
tile_size=64,
tile_stride=32,
device = "cuda",
vram_limit_level = 0,
):
# 1. ControlNet
# This part will be repeated on overlapping frames if animatediff_batch_size > animatediff_stride.
# I leave it here because I intend to do something interesting on the ControlNets.
controlnet_insert_block_id = 30
if controlnet is not None and controlnet_frames is not None:
res_stacks = []
# process controlnet frames with batch
for batch_id in range(0, sample.shape[0], controlnet_batch_size):
batch_id_ = min(batch_id + controlnet_batch_size, sample.shape[0])
res_stack = controlnet(
sample[batch_id: batch_id_],
timestep,
encoder_hidden_states[batch_id: batch_id_],
controlnet_frames[:, batch_id: batch_id_],
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride
)
if vram_limit_level >= 1:
res_stack = [res.cpu() for res in res_stack]
res_stacks.append(res_stack)
# concat the residual
additional_res_stack = []
for i in range(len(res_stacks[0])):
res = torch.concat([res_stack[i] for res_stack in res_stacks], dim=0)
additional_res_stack.append(res)
else:
additional_res_stack = None
# 2. time
time_emb = unet.time_proj(timestep[None]).to(sample.dtype)
time_emb = unet.time_embedding(time_emb)
# 3. pre-process
height, width = sample.shape[2], sample.shape[3]
hidden_states = unet.conv_in(sample)
text_emb = encoder_hidden_states
res_stack = [hidden_states.cpu() if vram_limit_level>=1 else hidden_states]
# 4. blocks
for block_id, block in enumerate(unet.blocks):
# 4.1 UNet
if isinstance(block, PushBlock):
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
if vram_limit_level>=1:
res_stack[-1] = res_stack[-1].cpu()
elif isinstance(block, PopBlock):
if vram_limit_level>=1:
res_stack[-1] = res_stack[-1].to(device)
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
else:
hidden_states_input = hidden_states
hidden_states_output = []
for batch_id in range(0, sample.shape[0], unet_batch_size):
batch_id_ = min(batch_id + unet_batch_size, sample.shape[0])
hidden_states, _, _, _ = block(
hidden_states_input[batch_id: batch_id_],
time_emb,
text_emb[batch_id: batch_id_],
res_stack,
cross_frame_attention=cross_frame_attention,
ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, {}),
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride
)
hidden_states_output.append(hidden_states)
hidden_states = torch.concat(hidden_states_output, dim=0)
# 4.2 AnimateDiff
if motion_modules is not None:
if block_id in motion_modules.call_block_id:
motion_module_id = motion_modules.call_block_id[block_id]
hidden_states, time_emb, text_emb, res_stack = motion_modules.motion_modules[motion_module_id](
hidden_states, time_emb, text_emb, res_stack,
batch_size=1
)
# 4.3 ControlNet
if block_id == controlnet_insert_block_id and additional_res_stack is not None:
hidden_states += additional_res_stack.pop().to(device)
if vram_limit_level>=1:
res_stack = [(res.to(device) + additional_res.to(device)).cpu() for res, additional_res in zip(res_stack, additional_res_stack)]
else:
res_stack = [res + additional_res for res, additional_res in zip(res_stack, additional_res_stack)]
# 5. output
hidden_states = unet.conv_norm_out(hidden_states)
hidden_states = unet.conv_act(hidden_states)
hidden_states = unet.conv_out(hidden_states)
return hidden_states
def lets_dance_xl(
unet: SDXLUNet,
motion_modules: SDXLMotionModel = None,
controlnet: MultiControlNetManager = None,
sample = None,
add_time_id = None,
add_text_embeds = None,
timestep = None,
encoder_hidden_states = None,
ipadapter_kwargs_list = {},
controlnet_frames = None,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
tiled=False,
tile_size=64,
tile_stride=32,
device = "cuda",
vram_limit_level = 0,
):
# 2. time
t_emb = unet.time_proj(timestep[None]).to(sample.dtype)
t_emb = unet.time_embedding(t_emb)
time_embeds = unet.add_time_proj(add_time_id)
time_embeds = time_embeds.reshape((add_text_embeds.shape[0], -1))
add_embeds = torch.concat([add_text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(sample.dtype)
add_embeds = unet.add_time_embedding(add_embeds)
time_emb = t_emb + add_embeds
# 3. pre-process
height, width = sample.shape[2], sample.shape[3]
hidden_states = unet.conv_in(sample)
text_emb = encoder_hidden_states
res_stack = [hidden_states]
# 4. blocks
for block_id, block in enumerate(unet.blocks):
hidden_states, time_emb, text_emb, res_stack = block(
hidden_states, time_emb, text_emb, res_stack,
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, {})
)
# 4.2 AnimateDiff
if motion_modules is not None:
if block_id in motion_modules.call_block_id:
motion_module_id = motion_modules.call_block_id[block_id]
hidden_states, time_emb, text_emb, res_stack = motion_modules.motion_modules[motion_module_id](
hidden_states, time_emb, text_emb, res_stack,
batch_size=1
)
# 5. output
hidden_states = unet.conv_norm_out(hidden_states)
hidden_states = unet.conv_act(hidden_states)
hidden_states = unet.conv_out(hidden_states)
return hidden_states