ShaoTengLiu
debug
69d3d9d
|
raw
history blame
3.34 kB

Video-P2P: Video Editing with Cross-attention Control

The official implementation of Video-P2P.

Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, Jiaya Jia

Project Website arXiv

Teaser

Changelog

  • 2023.03.20 Release Gradio Demo.
  • 2023.03.19 Release Code.
  • 2023.03.09 Paper preprint on arxiv.

Todo

  • Release the code with 6 examples.
  • Update a faster version.
  • Release all data.
  • Release the Gradio Demo.
  • Release more configs and new applications.

Setup

pip install -r requirements.txt

The code was tested on both Tesla V100 32GB and RTX3090 24GB.

The environment is similar to Tune-A-video and prompt-to-prompt.

xformers on 3090 may meet this issue.

Quickstart

Please replace ``pretrained_model_path'' with the path to your stable-diffusion.

# You can minimize the tuning epochs to speed up.
python run_tuning.py  --config="configs/rabbit-jump-tune.yaml" # Tuning to do model initialization.

# We develop a faster mode (1 min on V100):
python run_videop2p.py --config="configs/rabbit-jump-p2p.yaml" --fast

# The official mode (10 mins on V100, more stable):
python run_videop2p.py --config="configs/rabbit-jump-p2p.yaml"

Dataset

We release our dataset here. Download them under ./data and explore your creativity!

Results

configs/rabbit-jump-p2p.yaml configs/penguin-run-p2p.yaml
configs/man-motor-p2p.yaml configs/car-drive-p2p.yaml
configs/tiger-forest-p2p.yaml configs/bird-forest-p2p.yaml

Citation

@misc{liu2023videop2p,
      author={Liu, Shaoteng and Zhang, Yuechen and Li, Wenbo and Lin, Zhe and Jia, Jiaya},
      title={Video-P2P: Video Editing with Cross-attention Control}, 
      journal={arXiv:2303.04761},
      year={2023},
}

References