Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -214,93 +214,166 @@ app = FastAPI()
|
|
| 214 |
|
| 215 |
# return preprocessed, mesh_name_obj, mesh_name_glb
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
from gradio_client import Client
|
| 218 |
import requests
|
| 219 |
-
import
|
| 220 |
|
| 221 |
-
client
|
|
|
|
| 222 |
|
|
|
|
| 223 |
url = 'https://vibs08-image-3d-fastapi.hf.space/process_image/'
|
| 224 |
|
| 225 |
-
|
| 226 |
def text2img(prompt):
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
@app.post("/process_text/")
|
| 264 |
-
async def
|
| 265 |
text_prompt: str = Form(...),
|
| 266 |
seed: int = Form(...),
|
| 267 |
foreground_ratio: float = Form(...),
|
| 268 |
mc_resolution: int = Form(...),
|
| 269 |
auth: str = Form(...)
|
| 270 |
):
|
| 271 |
-
|
| 272 |
if auth == os.getenv("AUTHORIZE"):
|
| 273 |
return three_d(text_prompt, seed, foreground_ratio, mc_resolution, auth)
|
| 274 |
-
|
| 275 |
-
# else:
|
| 276 |
-
# return {"ERROR": "Too Many Requests!"}
|
| 277 |
-
|
| 278 |
-
# preprocessed, mesh_name_obj, mesh_name_glb = run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution)
|
| 279 |
-
# # preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
|
| 280 |
-
# # mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution)
|
| 281 |
-
# timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
|
| 282 |
-
# object_name = f'object_{timestamp}_1.obj'
|
| 283 |
-
# object_name_2 = f'object_{timestamp}_2.glb'
|
| 284 |
-
# object_name_3 = f"object_{timestamp}.png"
|
| 285 |
-
# preprocessed_image_tempfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
| 286 |
-
# preprocessed.save(preprocessed_image_tempfile.name)
|
| 287 |
-
# upload_file_to_s3(preprocessed_image_tempfile.name, 'framebucket3d', object_name_3)
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
# if upload_file_to_s3(mesh_name_obj, 'framebucket3d',object_name) and upload_file_to_s3(mesh_name_glb, 'framebucket3d',object_name_2):
|
| 291 |
-
|
| 292 |
-
# return {
|
| 293 |
-
# "img_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_3}",
|
| 294 |
-
# "obj_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}",
|
| 295 |
-
# "glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}"
|
| 296 |
-
|
| 297 |
-
# }
|
| 298 |
-
|
| 299 |
-
# else:
|
| 300 |
-
# return {"Internal Server Error": False}
|
| 301 |
else:
|
| 302 |
-
return {"Authentication":"Failed"}
|
| 303 |
|
| 304 |
if __name__ == "__main__":
|
| 305 |
import uvicorn
|
| 306 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 214 |
|
| 215 |
# return preprocessed, mesh_name_obj, mesh_name_glb
|
| 216 |
|
| 217 |
+
# from gradio_client import Client
|
| 218 |
+
# import requests
|
| 219 |
+
# import json
|
| 220 |
+
|
| 221 |
+
# client = Client("vibs08/flash-sd3-new",hf_token=os.getenv("token"))
|
| 222 |
+
|
| 223 |
+
# url = 'https://vibs08-image-3d-fastapi.hf.space/process_image/'
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
# def text2img(promptt):
|
| 227 |
+
# result = client.predict(
|
| 228 |
+
# prompt=promptt,
|
| 229 |
+
# seed=0,
|
| 230 |
+
# randomize_seed=False,
|
| 231 |
+
# guidance_scale=1,
|
| 232 |
+
# num_inference_steps=4,
|
| 233 |
+
# negative_prompt="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW, bad text",
|
| 234 |
+
# api_name="/infer"
|
| 235 |
+
# )
|
| 236 |
+
# return result
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
# def three_d(prompt,seed,fr,mc,auth,text=None):
|
| 240 |
+
|
| 241 |
+
# file_path = text2img(prompt)
|
| 242 |
+
# payload = {
|
| 243 |
+
# 'seed': seed,
|
| 244 |
+
# 'enhance_image': False,
|
| 245 |
+
# 'do_remove_background': True,
|
| 246 |
+
# 'foreground_ratio': fr,
|
| 247 |
+
# 'mc_resolution': mc,
|
| 248 |
+
# 'auth': auth,
|
| 249 |
+
# 'text_prompt': text
|
| 250 |
+
# }
|
| 251 |
+
|
| 252 |
+
# files = {
|
| 253 |
+
# 'file': (file_path, open(file_path, 'rb'), 'image/png')
|
| 254 |
+
# }
|
| 255 |
+
|
| 256 |
+
# headers = {
|
| 257 |
+
# 'accept': 'application/json'
|
| 258 |
+
# }
|
| 259 |
+
|
| 260 |
+
# response = requests.post(url, headers=headers, files=files, data=payload)
|
| 261 |
+
|
| 262 |
+
# return response.json()
|
| 263 |
+
# @app.post("/process_text/")
|
| 264 |
+
# async def process_image(
|
| 265 |
+
# text_prompt: str = Form(...),
|
| 266 |
+
# seed: int = Form(...),
|
| 267 |
+
# foreground_ratio: float = Form(...),
|
| 268 |
+
# mc_resolution: int = Form(...),
|
| 269 |
+
# auth: str = Form(...)
|
| 270 |
+
# ):
|
| 271 |
+
|
| 272 |
+
# if auth == os.getenv("AUTHORIZE"):
|
| 273 |
+
# return three_d(text_prompt, seed, foreground_ratio, mc_resolution, auth)
|
| 274 |
+
|
| 275 |
+
# # else:
|
| 276 |
+
# # return {"ERROR": "Too Many Requests!"}
|
| 277 |
+
|
| 278 |
+
# # preprocessed, mesh_name_obj, mesh_name_glb = run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution)
|
| 279 |
+
# # # preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
|
| 280 |
+
# # # mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution)
|
| 281 |
+
# # timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
|
| 282 |
+
# # object_name = f'object_{timestamp}_1.obj'
|
| 283 |
+
# # object_name_2 = f'object_{timestamp}_2.glb'
|
| 284 |
+
# # object_name_3 = f"object_{timestamp}.png"
|
| 285 |
+
# # preprocessed_image_tempfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
| 286 |
+
# # preprocessed.save(preprocessed_image_tempfile.name)
|
| 287 |
+
# # upload_file_to_s3(preprocessed_image_tempfile.name, 'framebucket3d', object_name_3)
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
# # if upload_file_to_s3(mesh_name_obj, 'framebucket3d',object_name) and upload_file_to_s3(mesh_name_glb, 'framebucket3d',object_name_2):
|
| 291 |
+
|
| 292 |
+
# # return {
|
| 293 |
+
# # "img_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_3}",
|
| 294 |
+
# # "obj_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}",
|
| 295 |
+
# # "glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}"
|
| 296 |
+
|
| 297 |
+
# # }
|
| 298 |
+
|
| 299 |
+
# # else:
|
| 300 |
+
# # return {"Internal Server Error": False}
|
| 301 |
+
# else:
|
| 302 |
+
# return {"Authentication":"Failed"}
|
| 303 |
+
|
| 304 |
+
# if __name__ == "__main__":
|
| 305 |
+
# import uvicorn
|
| 306 |
+
# uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
from gradio_client import Client
|
| 310 |
import requests
|
| 311 |
+
import os
|
| 312 |
|
| 313 |
+
# Initialize Gradio client with Hugging Face token
|
| 314 |
+
client = Client("vibs08/flash-sd3-new", hf_token=os.getenv("token"))
|
| 315 |
|
| 316 |
+
# URL for processing image via FastAPI
|
| 317 |
url = 'https://vibs08-image-3d-fastapi.hf.space/process_image/'
|
| 318 |
|
|
|
|
| 319 |
def text2img(prompt):
|
| 320 |
+
# Use the Gradio client to generate an image from text
|
| 321 |
+
result = client.predict(
|
| 322 |
+
inputs=prompt, # Adjust the argument name based on the actual method signature
|
| 323 |
+
seed=0,
|
| 324 |
+
randomize_seed=False,
|
| 325 |
+
guidance_scale=1,
|
| 326 |
+
num_inference_steps=4,
|
| 327 |
+
negative_prompt="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW, bad text",
|
| 328 |
+
api_name="/infer"
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
# Assuming result is a file path or image data
|
| 332 |
+
return result
|
| 333 |
+
|
| 334 |
+
def three_d(prompt, seed, fr, mc, auth, text=None):
|
| 335 |
+
file_path = text2img(prompt) # Get the file path of the generated image
|
| 336 |
+
|
| 337 |
+
payload = {
|
| 338 |
+
'seed': seed,
|
| 339 |
+
'enhance_image': False,
|
| 340 |
+
'do_remove_background': True,
|
| 341 |
+
'foreground_ratio': fr,
|
| 342 |
+
'mc_resolution': mc,
|
| 343 |
+
'auth': auth,
|
| 344 |
+
'text_prompt': text
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
with open(file_path, 'rb') as image_file:
|
| 348 |
+
files = {
|
| 349 |
+
'file': (file_path, image_file, 'image/png')
|
| 350 |
+
}
|
| 351 |
+
|
| 352 |
+
headers = {
|
| 353 |
+
'accept': 'application/json'
|
| 354 |
+
}
|
| 355 |
+
|
| 356 |
+
response = requests.post(url, headers=headers, files=files, data=payload)
|
| 357 |
+
|
| 358 |
+
return response.json()
|
| 359 |
+
|
| 360 |
+
from fastapi import FastAPI, Form
|
| 361 |
+
|
| 362 |
+
app = FastAPI()
|
| 363 |
+
|
| 364 |
@app.post("/process_text/")
|
| 365 |
+
async def process_text(
|
| 366 |
text_prompt: str = Form(...),
|
| 367 |
seed: int = Form(...),
|
| 368 |
foreground_ratio: float = Form(...),
|
| 369 |
mc_resolution: int = Form(...),
|
| 370 |
auth: str = Form(...)
|
| 371 |
):
|
|
|
|
| 372 |
if auth == os.getenv("AUTHORIZE"):
|
| 373 |
return three_d(text_prompt, seed, foreground_ratio, mc_resolution, auth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
else:
|
| 375 |
+
return {"Authentication": "Failed"}
|
| 376 |
|
| 377 |
if __name__ == "__main__":
|
| 378 |
import uvicorn
|
| 379 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|