veerdosi's picture
updated app.py
f0762d7 verified
raw
history blame contribute delete
739 Bytes
import gradio as gr
from diffusers import DiffusionPipeline
import torch
import base64
import io
pipe = DiffusionPipeline.from_pretrained("Nihirc/Prompt2MedImage")
if torch.cuda.is_available():
pipe = pipe.to("cuda")
def generate_image(prompt):
image = pipe(prompt).images[0]
# Convert to base64 for API compatibility
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str # Return base64 string directly
iface = gr.Interface(
fn=generate_image,
inputs=gr.Textbox(label="Prompt"),
outputs=gr.Textbox(label="Base64 Image"), # Changed from Image to Textbox
title="Medical Image Generator"
)
iface.launch()