import gradio as gr from diffusers import DiffusionPipeline import torch import base64 import io pipe = DiffusionPipeline.from_pretrained("Nihirc/Prompt2MedImage") if torch.cuda.is_available(): pipe = pipe.to("cuda") def generate_image(prompt): image = pipe(prompt).images[0] # Convert to base64 for API compatibility buffered = io.BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() return img_str # Return base64 string directly iface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Prompt"), outputs=gr.Textbox(label="Base64 Image"), # Changed from Image to Textbox title="Medical Image Generator" ) iface.launch()