Salient_3_problems / get_explanation.py
Vedant Pungliya
Updating files
5d6df7a unverified
import pandas as pd
import os
from google import genai
from google.genai import types
import json
from tqdm import tqdm
from typing import List, Dict
import time
def configure_genai(api_key: str):
"""Configure the Gemini API with the provided key."""
os.environ["GEMINI_API_KEY"] = api_key
def load_predictions(task: str, layer: int) -> pd.DataFrame:
"""Load predictions from CSV file."""
predictions_path = os.path.join("src", "codebert", task, f"layer{layer}", f"predictions_layer_{layer}.csv")
if os.path.exists(predictions_path):
try:
df = pd.read_csv(predictions_path, delimiter='\t')
df['Token'] = df['Token'].astype(str)
df['predicted_cluster'] = df['Top 1'].astype(str)
return df
except Exception as e:
print(f"Error loading predictions: {str(e)}")
return None
return None
def load_clusters(task: str, layer: int) -> Dict:
"""Load cluster data from clusters file."""
clusters_path = os.path.join("src", "codebert", task, f"layer{layer}", "clusters-350.txt")
if not os.path.exists(clusters_path):
return None
clusters = {}
try:
with open(clusters_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line:
continue
try:
parts = [p.strip() for p in line.split('|||')]
if len(parts) == 5:
token, occurrence, line_num, col_num, cluster_id = parts
cluster_id = cluster_id.split('|')[0].strip()
if not cluster_id.isdigit():
continue
cluster_id = str(int(cluster_id))
if cluster_id not in clusters:
clusters[cluster_id] = []
clusters[cluster_id].append({
'token': token,
'line_num': int(line_num),
'col_num': int(col_num)
})
except Exception:
continue
except Exception as e:
print(f"Error loading clusters: {str(e)}")
return None
return clusters
def load_sentences(task: str, layer: int, file_name: str) -> List[str]:
"""Load sentences from specified file."""
file_path = os.path.join("src", "codebert", task, f"layer{layer}", file_name)
if not os.path.exists(file_path):
file_path = os.path.join("src", "codebert", task, file_name)
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.readlines()
except Exception as e:
print(f"Error loading sentences from {file_path}: {str(e)}")
return []
def get_gemini_explanation(sentence: str, highlighted_token: str, cluster_words: List[str]) -> str:
"""Get explanation from Gemini about the relationship between the token and cluster words."""
highlighted_sentence = sentence.replace(highlighted_token, f"[[{highlighted_token}]]")
prompt = f"""Do you find any common semantic, structural, lexical and topical relation between the word highlighted in the sentence (enclosed in [[ ]]) and the following list of words? Give a more specific and concise summary about the most prominent relation among these words.
Sentence: {highlighted_sentence}
List of words: {', '.join(cluster_words)}
Answer concisely and to the point."""
# Create the client
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY")) # Ensure this is correct
model = "gemini-2.0-flash"
contents = [
types.Content(
role="user",
parts=[
types.Part.from_text(text=prompt), # Ensure this is the correct usage
],
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1.0,
response_mime_type="text/plain",
)
explanation = ""
for chunk in client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
):
explanation += chunk.text
return explanation.strip()
def is_cls_token(token: str) -> bool:
"""Check if a token is a CLS token."""
return token.startswith('[CLS]')
def get_gemini_explanation_for_cls(sentence: str, cluster_words: List[str], context_sentences: List[str]) -> str:
"""Get explanation from Gemini about the CLS token and its relationship with the cluster."""
# Include context sentences in the prompt
context_text = "\n".join(context_sentences) if context_sentences else "No context sentences available."
prompt = f"""[CLS] tokens represent the entire sentence. For this sentence, explain the semantic, structural, lexical, or topical meaning in relation to the list of words from similar contexts. What cohesive meaning does this sentence share with the contextual themes?
Original Sentence: {sentence}
List of cluster words: {', '.join(cluster_words)}
Context Sentences of the list of cluster words:
{context_text}
Answer concisely and to the point about the semantic or topical meaning this sentence shares with the contexts."""
# Create the client
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))
model = "gemini-2.0-flash"
contents = [
types.Content(
role="user",
parts=[
types.Part.from_text(text=prompt),
],
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1.0,
response_mime_type="text/plain",
)
explanation = ""
for chunk in client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
):
explanation += chunk.text
return explanation.strip()
def get_gemini_explanation_with_retry(sentence: str, highlighted_token: str, cluster_words: List[str], max_retries: int = 3) -> str:
"""Get explanation from Gemini with retry logic."""
retry_count = 0
while retry_count < max_retries:
try:
return get_gemini_explanation(sentence, highlighted_token, cluster_words)
except Exception as e:
retry_count += 1
error_type = type(e).__name__
print(f"\nEncountered {error_type}: {str(e)}")
if retry_count < max_retries:
wait_time = 60 # Wait for 60 seconds before retrying
print(f"Waiting {wait_time} seconds before retry {retry_count}/{max_retries}...")
time.sleep(wait_time)
else:
print(f"Max retries ({max_retries}) reached. Returning error message.")
return f"Error generating explanation after {max_retries} attempts: {str(e)}"
def get_gemini_explanation_for_cls_with_retry(sentence: str, cluster_words: List[str], context_sentences: List[str], max_retries: int = 3) -> str:
"""Get explanation for CLS tokens with retry logic."""
retry_count = 0
while retry_count < max_retries:
try:
return get_gemini_explanation_for_cls(sentence, cluster_words, context_sentences)
except Exception as e:
retry_count += 1
error_type = type(e).__name__
print(f"\nEncountered {error_type}: {str(e)}")
if retry_count < max_retries:
wait_time = 60 # Wait for 60 seconds before retrying
print(f"Waiting {wait_time} seconds before retry {retry_count}/{max_retries}...")
time.sleep(wait_time)
else:
print(f"Max retries ({max_retries}) reached. Returning error message.")
return f"Error generating explanation after {max_retries} attempts: {str(e)}"
def process_tokens(task: str, layer: int, api_key: str):
"""Process the first 15 tokens for a given task and layer with API rate limiting and error handling."""
# Configure Gemini
configure_genai(api_key)
# Load necessary data
predictions_df = load_predictions(task, layer)
clusters = load_clusters(task, layer)
dev_sentences = load_sentences(task, layer, "dev.in")
input_sentences = load_sentences(task, layer, "input.in")
if predictions_df is None or clusters is None:
print("Failed to load required data")
return
# Limit to first 15 tokens
predictions_df = predictions_df.head(15)
print(f"Limited processing to first {len(predictions_df)} tokens")
results = []
batch_size = 15 # API limit of 15 calls per minute
call_count = 0
start_time = time.time()
# Create output directory if it doesn't exist
output_dir = os.path.join("src", "codebert", task, f"layer{layer}")
os.makedirs(output_dir, exist_ok=True)
# Check if there's an interim file to resume from
interim_file = os.path.join(output_dir, f"token_explanations_layer_{layer}_test15.json")
if os.path.exists(interim_file):
try:
with open(interim_file, 'r', encoding='utf-8') as f:
results = json.load(f)
print(f"Resuming from {len(results)} previously processed tokens")
# Skip tokens we've already processed
processed_indices = {(result['line_idx'], result['position_idx']) for result in results}
except Exception as e:
print(f"Error loading interim file: {str(e)}")
processed_indices = set()
else:
processed_indices = set()
# Process limited number of tokens, showing progress with tqdm
for idx, row in tqdm(predictions_df.iterrows(), total=len(predictions_df), desc="Processing tokens"):
token = row['Token']
line_idx = row['line_idx']
position_idx = row['position_idx']
predicted_cluster = row['predicted_cluster']
# Skip if we've already processed this token
if (line_idx, position_idx) in processed_indices:
continue
# Get original sentence
if line_idx < len(dev_sentences):
original_sentence = dev_sentences[line_idx].strip()
else:
continue
# Get unique cluster words
if predicted_cluster in clusters:
cluster_words = list(set(token_info['token'] for token_info in clusters[predicted_cluster]))
# Gather context sentences from the predicted cluster
context_sentences = []
for token_info in clusters[predicted_cluster]:
context_line_num = token_info['line_num']
if context_line_num < len(input_sentences):
context_sentences.append(input_sentences[context_line_num].strip())
else:
continue
# Rate limiting: check if we've reached the batch limit
call_count += 1
if call_count >= batch_size:
elapsed = time.time() - start_time
# If we've made batch_size calls in less than 60 seconds, wait until the minute is up
if elapsed < 60:
wait_time = 60 - elapsed
print(f"\nReached API limit of {batch_size} calls. Waiting for {wait_time:.2f} seconds...")
time.sleep(wait_time)
# Reset counters
call_count = 0
start_time = time.time()
# Choose the right explanation function based on token type
try:
if is_cls_token(token):
# Special handling for CLS tokens with retry
explanation = get_gemini_explanation_for_cls_with_retry(original_sentence, cluster_words, context_sentences)
else:
# Standard handling for other tokens with retry
explanation = get_gemini_explanation_with_retry(original_sentence, token, cluster_words)
# Store results
result = {
'token': token,
'is_cls_token': is_cls_token(token),
'line_idx': int(line_idx),
'position_idx': int(position_idx),
'predicted_cluster': predicted_cluster,
'original_sentence': original_sentence,
'cluster_words': cluster_words,
'context_sentences': context_sentences,
'explanation': explanation
}
results.append(result)
# Add to processed indices
processed_indices.add((line_idx, position_idx))
# Save after each token for this small test run
with open(interim_file, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"\nSaved results to: {interim_file}")
except Exception as e:
print(f"\nUnexpected error processing token {token}: {str(e)}")
# Save current results before potentially exiting
with open(interim_file, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"Emergency save to: {interim_file}")
# Wait a minute before continuing
print("Waiting 60 seconds before continuing...")
time.sleep(60)
# Reset batch counters
call_count = 0
start_time = time.time()
# Save final results with a different name to indicate it's the test run
output_file = os.path.join(output_dir, f"token_explanations_layer_{layer}_first15.json")
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"Results saved to: {output_file}")
def main():
# Configuration
API_KEY = "AIzaSyCUCwrqcDNTSaHsn5Ln_91A0L03W864iYU" # Replace with your API key
TASK = "language_classification" # Replace with your task name
LAYER = 11 # Replace with your layer number
process_tokens(TASK, LAYER, API_KEY)
if __name__ == "__main__":
main()