|
import os |
|
os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt") |
|
os.system("pip install imageio") |
|
os.system("pip install albumentations==0.5.2") |
|
os.system("pip install opencv-python") |
|
os.system("pip install ffmpeg-python") |
|
os.system("pip install moviepy") |
|
import cv2 |
|
import paddlehub as hub |
|
import gradio as gr |
|
import torch |
|
from PIL import Image, ImageOps |
|
import numpy as np |
|
import imageio |
|
from moviepy.editor import * |
|
os.mkdir("data") |
|
os.rename("best.ckpt", "models/best.ckpt") |
|
os.mkdir("dataout") |
|
|
|
def get_frames(video_in): |
|
frames = [] |
|
|
|
clip = VideoFileClip(video_in) |
|
|
|
|
|
if clip.fps > 30: |
|
print("vide rate is over 30, resetting to 30") |
|
clip_resized = clip.resize(height=256) |
|
clip_resized.write_videofile("video_resized.mp4", fps=30) |
|
else: |
|
print("video rate is OK") |
|
clip_resized = clip.resize(height=256) |
|
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps) |
|
|
|
print("video resized to 512 height") |
|
|
|
|
|
cap= cv2.VideoCapture("video_resized.mp4") |
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
print("video fps: " + str(fps)) |
|
i=0 |
|
while(cap.isOpened()): |
|
ret, frame = cap.read() |
|
if ret == False: |
|
break |
|
cv2.imwrite('kang'+str(i)+'.jpg',frame) |
|
frames.append('kang'+str(i)+'.jpg') |
|
i+=1 |
|
|
|
cap.release() |
|
cv2.destroyAllWindows() |
|
print("broke the video into frames") |
|
|
|
return frames, fps |
|
|
|
def create_video(frames, fps, type): |
|
print("building video result") |
|
clip = ImageSequenceClip(frames, fps=fps) |
|
clip.write_videofile(type + "_result.mp4", fps=fps) |
|
|
|
return type + "_result.mp4" |
|
|
|
|
|
def magic_lama(img): |
|
|
|
i = img |
|
img = Image.open(img) |
|
mask = Image.open("./masks/modelscope-mask.png") |
|
inverted_mask = ImageOps.invert(mask) |
|
|
|
|
|
imageio.imwrite(f"./data/data.png", img) |
|
imageio.imwrite(f"./data/data_mask.png", inverted_mask) |
|
os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu') |
|
return f"./dataout/data_mask.png" |
|
|
|
def infer(video_in): |
|
|
|
break_vid = get_frames(video_in) |
|
frames_list= break_vid[0] |
|
fps = break_vid[1] |
|
|
|
n_frame = len(frames_list) |
|
|
|
if n_frame >= len(frames_list): |
|
print("video is shorter than the cut value") |
|
n_frame = len(frames_list) |
|
|
|
|
|
result_frames = [] |
|
print("set stop frames to: " + str(n_frame)) |
|
|
|
for i in frames_list[0:int(n_frame)]: |
|
lama_frame = magic_lama(i) |
|
lama_frame = Image.open(lama_frame) |
|
imageio.imwrite(f"cleaned_frame_{i}", lama_frame) |
|
result_frames.append(f"cleaned_frame_{i}") |
|
print("frame " + i + "/" + str(n_frame) + ": done;") |
|
|
|
|
|
final_vid = create_video(result_frames, fps, "cleaned") |
|
|
|
files = [final_vid] |
|
|
|
return final_vid |
|
|
|
inputs = [gr.Video(label="Input", source="upload", type="filepath")] |
|
outputs = [gr.Video(label="output")] |
|
title = "LaMa Video Watermark Remover" |
|
description = "<p style='text-align: center'>LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. <br />This demo in meant to be used as a watermark remover on Modelscope generated videos. <br />Simply upload your modelscope video and hit Submit</p>" |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>" |
|
examples = ["./examples/modelscope-astronaut-horse.mp4", "./examples/modelscope-panda.mp4", "./examples/modelscope-spiderman-surfing.mp4"] |
|
gr.Interface(infer, inputs, outputs, title=title, |
|
description=description, article=article, examples=examples).launch() |
|
|